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what are ontologies good for?

To standardize the terminology of an application domain
∙ meaning of terms is constrained, so less misunderstandings
∙ by adopting a common vocabulary, easy to share information

To present an intuitive and unified view of data sources
∙ ontology can be used to enrich the data vocabulary, making it
easier for users to formulate their queries

∙ especially useful when integrating multiple data sources

To support automated reasoning
∙ uncover implicit connections between terms, errors in modelling
∙ exploit knowledge in the ontology during query answering, to get
back a more complete set of answers to queries
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applications of omqa: medicine

General medical ontologies: SNOMED CT (∼ 400,000 terms!), GALEN
Specialized ontologies: FMA (anatomy), NCI (cancer), ...

Querying & exchanging medical records (find patients for medical trials)
∙ myocardial infarction vs. MI vs. heart attack vs. 410.0

Supports tools for annotating and visualizing patient data (scans, x-rays) 4/41



applications of omqa: life sciences

Hundreds of ontologies at BioPortal (http://bioportal.bioontology.org/):
Gene Ontology (GO), Cell Ontology, Pathway Ontology, Plant Anatomy, ...

Help scientists share, query, & visualize experimental data
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applications of omqa: entreprise information systems

Companies and organizations have lots of data
∙ need easy and flexible access to support decision-making

Example industrial projects:
∙ Public debt data: Sapienza Univ. & Italian Department of Treasury
∙ Energy sector: Optique EU project (several univ, StatOil, & Siemens)
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our focus: description logics

Ontologies formulated using description logics (DLs):
∙ family of decidable fragments of first-order logic
∙ basis for OWL web ontology language (W3C)
∙ range from fairly simple to highly expressive
∙ complexity of query answering well understood

Of particular interest: Horn description logics
∙ DL-LiteR, EL, ELHI , Horn-SHIQ, ...
∙ good computational properties, well suited for OMQA
∙ still expressive enough for interesting applications
∙ basis for OWL 2 QL and OWL 2 EL profiles
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plan for this talk

Basics of DLs

Introduction to OMQA

OMQA with Lightweight DLs

Research Trends in OMQA
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basics of dls



dl basics

Building blocks of DLs:

∙ concept names (unary predicates, classes)

IceCream,Pizza,Meat, SpicyDish,Dish,Menu,Restaurant, ...

∙ role names (binary predicates, properties)

hasIngred,hasCourse,hasDessert, serves, ...

∙ individual names (constants)

menu32,pastadish17,d3, rest156, r12, ...

(specific menus, dishes, restaurants ...)

NC / NR / NI: set of all concept / role / individual names
10/41



dl knowledge bases

Knowledge base (KB) = ABox (data) + TBox (ontology)

ABox contains facts about specific individuals

∙ finite set of concept assertions A(a) and role assertions r(a,b)
∙ IceCream(d2): dish d2 is of type IceCream
∙ hasDessert(m,d2): menu m is connected via hasDessert to dish d2

TBox contains general knowledge about the domain of interest

∙ finite set of axioms (details on syntax to follow)
∙ IceCream is a subclass of Dessert
∙ hasCourse connects Menus to Dishes
∙ every Menu is connected to at least one dish via hasCourse
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concept and role constructors

Can build complex concepts and roles using constructors:

∙ conjunction (⊓), disjunction (⊔), negation (¬)

Dessert ⊓ ¬IceCream Pizza ⊔ PastaDish

∙ restricted forms of existential and universal quantification (∃, ∀)

∃contains.Meat ∃hasCourse.⊤ Dish ⊓ ∀contains.¬Meat
( ⊤ acts as a “wildcard”, denotes set of all things)

∙ inverse (−) and composition (·) of roles

hasCourse− contains · contains

Note: set of available constructors depends on the particular DL!
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tbox axioms

Concept inclusions C ⊑ D (C,D possibly complex concepts)

IceCream⊑ Dessert Menu⊑ ∃hasCourse.⊤ Spicy ⊓ Dish⊑ SpicyDish

Role inclusions R ⊑ S (R, S possibly complex roles)

hasIngred⊑ contains ingredOf− ⊑ hasIngred hasDessert⊑ hasCourse

Note: type and syntax of axioms depends on the particular DL!
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example dls

“Standard” expressive description logic ALC:

∙ Concept constructors: C := ⊤ | A | ¬C | C ⊓ C | C ⊔ C | ∃r.C | ∀r.C
∙ TBox axioms: only concept inclusions

“Lightweight” description logic EL

∙ Concept constructors: C := ⊤ | A | C ⊓ C | ∃r.C
∙ TBox axioms: only concept inclusions

ALCI = extension of ALC with inverse roles (r−)

ELH = EL + role inclusions (r ⊑ s)
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dl semantics

Interpretation I (“possible world”)

∙ domain of objects ∆I (possibly infinite set)

∙ interpretation function ·I that maps
∙ concept name A⇝ set of objects AI ⊆ ∆I

∙ role name r⇝ set of pairs of objects rI ⊆ ∆I ×∆I

∙ individual name a⇝ object aI ∈ ∆I

Interpretation function ·I extends to complex concepts and roles:
⊤ ∆I

⊥ ∅
¬C ∆I \ CI

C1 ⊓ C2 C1I ∩ C2I

∃R.C {d1 | there exists (d1,d2) ∈ RI with d2 ∈ CI}
∀R.C {d1 | d2 ∈ CI for all (d1,d2) ∈ RI}
r− {(d2,d1) | (d1,d2) ∈ rI}
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semantics of dl kbs

Satisfaction in an interpretation

∙ I satisfies C ⊑ D ⇔ CI ⊆ DI

∙ I satisfies R ⊑ S ⇔ RI ⊆ SI

∙ I satisfies A(a) ⇔ aI ∈ AI

∙ I satisfies r(a,b) ⇔ (aI ,bI) ∈ rI

Model of a KB K = interpretation that satisfies all statements in K

K is satisfiable = K has at least one model

K entails α (written K |= α) = every model I of K satisfies α

Note: ABoxes are interpreted under the open-world assumption
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introduction to omqa



instance queries

Instance queries (IQs): find instances of a given concept or role
(aka atomic queries)

A(x) where A ∈ NC concept instance query

r(x, y) where r ∈ NR role instance query

To query for a complex concept C, take AC(x) for fresh AC ∈ NC and
add C ⊑ AC to the TBox

Remarks:
∙ Instance query answering is often called instance checking
∙ Focus of OMQA until mid-2000s
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(unions of) conjunctive queries

IQs are quite restricted: no selections and joins as in DB queries

Most work on OMQA adopts (unions of) conjunctive queries (CQs).

A conjunctive query (CQ) takes the form

q(⃗x) = ∃⃗y.P1(t⃗1) ∧ · · · ∧ Pn(t⃗n)

where every Pi is a concept or role name
and t⃗i contains individual names and/or variables from x⃗ ∪ y⃗

A union of CQs (UCQ) takes the form of a disjunction of CQs:

q1(⃗x) ∨ · · · ∨ qn(⃗x)
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querying dl knowledge bases

Query q of arity n + interpretation I ⇝ set of answers ans(q, I)
(n-tuples of elements from I)

Each KB gives rise to multiple interpretations (its models)

∙ want tuple to be an answer w.r.t. all models of KB

Formally: Call a tuple a⃗ = (a1, . . . ,an) of individuals from A a certain
answer to n-ary query q over DL KB K = (T ,A) if

(aI1 , . . . ,aIn ) ∈ ans(q, I) for every model I of K

in which case we write K |= q(a⃗)

Ontology-mediated query answering (OMQA)
= computing certain answers to queries

20/41
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complexity of omqa

View OMQA as a decision problem (yes-or-no question):

Problem: Q answering in L (Q a query language, L a DL)
Input: An n-ary query q ∈ Q, an ABox A, a L-TBox T ,

and a tuple a⃗ ∈ Ind(A)n

Question: Does T ,A |= q(a⃗)?

Combined complexity: in terms of size of whole input

Data complexity: in terms of size of A only
∙ view rest of input as fixed (of constant size)
∙ motivation: ABox typically much larger than rest of input

Note: use |A| to denote size of A (similarly for |T |, |q|, etc.)
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omqa in alc and alci

Recall the DL ALC: C := ⊤ | A | ¬C | C ⊓ C | C ⊔ C | ∃r.C | ∀r.C

Satisfiability, IQ answering, and CQ answering in ALC are:

∙ coNP-complete in data complexity
∙ EXPTIME-complete in combined complexity

The situation is even worse for ALCI (= ALC + inverse roles):

∙ coNP-complete in data complexity
∙ 2EXPTIME-complete(!) in combined complexity

22/41



data-tractable dls

Negative results led to proposal of new DLs with lower complexity

DL-Lite family of DLs (basis for OWL 2 QL)

∙ designed with OMQA in mind
∙ capture main constructs from conceptual modelling
∙ key technique: query rewriting (∼ backward chaining)

EL family of DLs (basis for OWL 2 EL)

∙ designed to allow efficient reasoning with large ontologies
∙ well suited for medical and life science applications
∙ key technique: saturation (∼ forward chaining)

Commonality: no disjunction, existence of canonical model

23/41
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omqa with lightweight dls



description logic dl-lite

We present the dialect DL-LiteR (which underlies OWL2 QL profile).

DL-LiteR TBoxes contain

∙ concept inclusions B1 ⊑ B2, B1 ⊑ ¬B2
∙ role inclusions S1 ⊑ S2, S1 ⊑ ¬S2

where B := A | ∃S S := r | r−

Example TBox inclusions:
∙ Every professor teaches something: Prof ⊑ ∃teaches
∙ Everything that is taught is a course: ∃teaches− ⊑ Course
∙ Head of dept implies member of dept: headOf ⊑ memberOf
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query rewriting

Idea: reduce OMQA to database query evaluation

∙ rewriting step: TBox T + query q⇝ first-order (SQL) query q′

∙ evaluation step: evaluate query q′ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting

∙ FO query q′ is an FO-rewriting of q w.r.t. TBox T iff for every ABox A:

T ,A |= q(a⃗) ⇔ DBA |= q′(a⃗)

Informally: evaluating q′ over A (viewed as DB) gives correct result

Good news: every CQ and DL-Lite ontology has FO-rewriting
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example of query rewriting

TBox: Query:

ItalDish⊑Dish
VegDish⊑Dish

Dish⊑∃hasIngred
∃hasCourse− ⊑Dish

hasMain⊑hasCourse
hasDessert⊑hasCourse

q(x) = Dish(x)

We compute a rewriting of q(x) w.r.t. T step by step:

q′(x) =Dish(x)

∨ ItalDish(x) ∨ VegDish(x) ∨ ∃y.hasCourse(y, x)
∨ ∃y.hasMain(y, x) ∨ ∃y.hasDessert(y, x)
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example of query rewriting

TBox: ABox:

ItalDish⊑Dish
VegDish⊑Dish

Dish⊑∃hasIngred
∃hasCourse− ⊑Dish

hasMain⊑hasCourse
hasDessert⊑hasCourse

hasMain(m,d1)
hasDessert(m,d2)
VegDish(d3)

q′(x) =Dish(x) ∨ ItalDish(x) ∨ VegDish(x) ∨ ∃y.hasCourse(y, x)
∨ ∃y.hasMain(y, x) ∨ ∃y.hasDessert(y, x)

Certain answers: d1, because of the disjunct ∃y.hasMain(y, x)
d2, because of the disjunct ∃y.hasDessert(y, x)
d3, because of the disjunct VegDish(x)
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another rewriting example

TBox:

{ ∃coordinates ⊑ Prof coordinates ⊑ involved 100S ⊑ IntroC}

Query: Prof(x) ∧ involved(x, y) ∧ IntroC(y)

Obtain FO-rewriting by taking disjunction of q0 and the CQs:

q1 = ∃z coordinates(x, z) ∧ involved(x, y) ∧ IntroC(y)
q2 = coordinates(x, y) ∧ IntroC(y)
q3 = Prof(x) ∧ coordinates(x, y) ∧ 100S(y)
q4 = ∃z coordinates(x, z) ∧ involved(x, y) ∧ 100S(y)
q5 = coordinates(x, y) ∧ 100S(y)
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complexity of omqa in dl-lite

Data complexity:

∙ rewriting takes constant time, yields FO query

∙ upper bound from FO query evaluation: AC0 (AC0 ⊆ LogSpace ⊆ P)

∙ CQ answering is in AC0 for data complexity

Combined complexity:

∙ ‘guess’ a disjunct of the rewriting and how to map it into ABox

∙ CQ answering is NP-complete (same as for DBs)

∙ IQ answering is NLogSpace-complete (NLogSpace ⊆ P)

Note: Same bounds hold for several other DL-Lite dialects
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iq answering in el

Next consider IQ answering in EL.

Assume EL TBoxes given in normal form: axioms of the forms

A1 ⊓ . . . ⊓ An ⊑ B A⊑ ∃r.B ∃r.A⊑ B

(A, Ai,B ∈ NC)

Cannot use FO query rewriting approach for EL:

no FO-rewriting of A(x) w.r.t. T = {∃r.A⊑ A}

We present a saturation-based approach.
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saturation rules for el

TBox rules

A⊑ Bi (1 ≤ i ≤ n) B1 ⊓ . . . ⊓ Bn ⊑ D
A⊑ D

T1 A⊑ B B⊑ ∃r.D
A⊑ ∃r.D

T2

A⊑ ∃r.B B⊑ D ∃r.D⊑ E
A⊑ E

T3

ABox rules

A1 ⊓ . . . ⊓ An ⊑ B Ai(a) (1 ≤ i ≤ n)
B(a)

A1
∃r.B⊑ A r(a,b) B(b)

A(a)
A2

Algorithm: apply rules exhaustively, check if A(a) (r(a,b)) is present
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example: saturation in el

ArrabSauce⊑ Spicy T3 : (5), (6), (7) (10)
PenneArrab⊑ Spicy T3 : (1), (10), (7) (11)
PenneArrab⊑ Dish T1 : (2), (3) (12)
PenneArrab⊑ ∃hasIngred.Pasta T2 : (2), (4) (13)
PenneArrab⊑ SpicyDish T1 : (11), (12), (8) (14)
Spicy(p) A1 : (11), (9) (15)
Dish(p) A1 : (12), (9) (16)
SpicyDish(p) A1 : (16), (15) (17)
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complexity of iq answering in el

Saturation approach is sound: everything derived is entailed

Also complete for instance checking:

Theorem Let K be an EL knowledge base, and let K′ be the result
of saturating K. For every ABox assertion α, we have:

K |= α iff α ∈ K′

Note: does not make all consequences explicit

∙ can have infinitely many implied axioms⇝ would not terminate!
∙ so: only complete for some reasoning tasks

Runs in polynomial time in |K|. This is optimal:

IQ answering in EL is P-complete for data & combined complexity

34/41



complexity of iq answering in el

Saturation approach is sound: everything derived is entailed

Also complete for instance checking:

Theorem Let K be an EL knowledge base, and let K′ be the result
of saturating K. For every ABox assertion α, we have:

K |= α iff α ∈ K′

Note: does not make all consequences explicit

∙ can have infinitely many implied axioms⇝ would not terminate!
∙ so: only complete for some reasoning tasks

Runs in polynomial time in |K|. This is optimal:

IQ answering in EL is P-complete for data & combined complexity

34/41



complexity of iq answering in el

Saturation approach is sound: everything derived is entailed

Also complete for instance checking:

Theorem Let K be an EL knowledge base, and let K′ be the result
of saturating K. For every ABox assertion α, we have:

K |= α iff α ∈ K′

Note: does not make all consequences explicit

∙ can have infinitely many implied axioms⇝ would not terminate!
∙ so: only complete for some reasoning tasks

Runs in polynomial time in |K|. This is optimal:

IQ answering in EL is P-complete for data & combined complexity

34/41



complexity of iq answering in el

Saturation approach is sound: everything derived is entailed

Also complete for instance checking:

Theorem Let K be an EL knowledge base, and let K′ be the result
of saturating K. For every ABox assertion α, we have:

K |= α iff α ∈ K′

Note: does not make all consequences explicit

∙ can have infinitely many implied axioms⇝ would not terminate!
∙ so: only complete for some reasoning tasks

Runs in polynomial time in |K|. This is optimal:

IQ answering in EL is P-complete for data & combined complexity
34/41



cq answering in el

Complexity of CQ answering in EL:
∙ P-complete in data complexity (scale polynomially in |A|)
∙ can be shown e.g. by rewriting into Datalog

∙ NP-complete in combined complexity

Combined approach:
∙ saturate ABox using the TBox axioms
∙ introduce new individuals to witness existentials on LHS (A ⊑ ∃r.B)
∙ to ensure finite: reuse individuals as witnesses

∙ evaluate query on saturated ABox⇒ superset of certain answers
∙ two strategies to block unsound answers:
∙ add extra conditions to query
∙ post-processing to identify and remove false answers
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research trends in omqa



efficient omqa in dl-lite

Lots of work on developing and implementing
efficient OMQA algorithms

Focus mostly on DL-Lite (and related dialects):

∙ First algorithm PerfectRef proposed in mid-2000’s
∙ Rewrites into UCQs, implemented in Quonto
∙ Improved versions proposed in Requiem, Presto, Rapid, …
∙ Some algorithms rewrite into positive existential queries or
Datalog programs instead of UCQs

∙ Resulting queries are smaller, can be easier to evaluate
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optimizations and omqa beyond dl-lite

Tractable classes, fragments of lower complexity

Rewriting engines for other Horn DLs also developed, e.g.,

∙ Requiem and the related Kyrie cover several EL dialects

∙ Clipper, and recently Rapid cover Horn-SHIQ

They usually rewrite into Datalog programs
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understanding rewritability

Much attention devoted to understanding the limits of rewritability
and size of rewritings

When are polynomial-size rewritings possible?

Can we give bounds on the size of rewritings?

Which non-DL-Lite ontologies can be rewritten into FO-queries?

⇝ related to non-uniform complexity:

∙ study specific pairs (q, T ), called ontology-mediated queries
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other research topics (non-exhaustive)

Beyond classical OMQA  
∙ inconsistency-tolerant query answering
∙ probabilistic query answering
∙ privacy-aware query answering
∙ temporal query answering

Support for building and maintaining OMQA systems
∙ module extraction
∙ ontology evolution
∙ query inseparability and emptiness

Improving the usability of OMQA systems
∙ interfaces and support for query formulation
∙ explaining query (non-)answers
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Questions ?

30th anniversary DL workshop
July 18-21, 2017

Montpellier
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