ONTOLOGY-MEDIATED QUERY ANSWERING WITH DESCRIPTION LOGICS

Meghyn Bienvenu (LIRMM: CNRS & Université de Montpellier)

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

To standardize the terminology of an application domain

- · meaning of terms is constrained, so less misunderstandings
- \cdot by adopting a common vocabulary, easy to share information

To **standardize the terminology** of an application domain

- · meaning of terms is constrained, so less misunderstandings
- · by adopting a common vocabulary, easy to share information

To present an intuitive and unified view of data sources

- ontology can be used to **enrich the data vocabulary**, making it easier for users to formulate their queries
- \cdot especially useful when integrating multiple data sources

To **standardize the terminology** of an application domain

- · meaning of terms is constrained, so less misunderstandings
- · by adopting a common vocabulary, easy to share information

To present an intuitive and unified view of data sources

- ontology can be used to enrich the data vocabulary, making it easier for users to formulate their queries
- \cdot especially useful when integrating multiple data sources

To support automated reasoning

- · uncover implicit connections between terms, errors in modelling
- exploit knowledge in the ontology during query answering, to get back a more complete set of answers to queries

General medical ontologies: SNOMED CT (\sim 400,000 terms!), GALEN Specialized ontologies: FMA (anatomy), NCI (cancer), ...

Querying & exchanging medical records (find patients for medical trials)

• myocardial infarction vs. MI vs. heart attack vs. 410.0

Supports tools for annotating and visualizing patient data (scans, x-rays)

Hundreds of ontologies at BioPortal (http://bioportal.bioontology.org/): Gene Ontology (GO), Cell Ontology, Pathway Ontology, Plant Anatomy, ...

Help scientists share, query, & visualize experimental data

APPLICATIONS OF OMQA: ENTREPRISE INFORMATION SYSTEMS

Companies and organizations have lots of data

need easy and flexible access to support decision-making

Example industrial projects:

- · Public debt data: Sapienza Univ. & Italian Department of Treasury
- Energy sector: Optique EU project (several univ, StatOil, & Siemens)

Ontologies formulated using description logics (DLs):

- · family of decidable fragments of first-order logic
- basis for OWL web ontology language (W3C)
- · range from fairly simple to highly expressive
- complexity of query answering well understood

Ontologies formulated using description logics (DLs):

- · family of decidable fragments of first-order logic
- basis for OWL web ontology language (W3C)
- · range from fairly simple to highly expressive
- complexity of query answering well understood

Of particular interest: Horn description logics

- · DL-Lite_R, *EL*, *EL*HI, Horn-*S*HIQ, ...
- \cdot good computational properties, well suited for OMQA
- $\cdot\,$ still expressive enough for interesting applications
- · basis for OWL 2 QL and OWL 2 EL profiles

Basics of DLs

Introduction to OMQA

OMQA with Lightweight DLs

Research Trends in OMQA

BASICS OF DLS

Building blocks of DLs:

· concept names (unary predicates, classes)

IceCream, Pizza, Meat, SpicyDish, Dish, Menu, Restaurant, ...

· role names (binary predicates, properties)

hasIngred, hasCourse, hasDessert, serves, ...

· individual names (constants)

menu32, pastadish17, d3, rest156, r12, ...

(specific menus, dishes, restaurants ...)

 $N_C / N_R / N_I$: set of all concept / role / individual names

ABox contains facts about specific individuals

- finite set of concept assertions A(a) and role assertions r(a, b)
- · IceCream(d_2): dish d_2 is of type IceCream
- · hasDessert(m, d_2): menu m is connected via hasDessert to dish d_2

ABox contains facts about specific individuals

- finite set of concept assertions A(a) and role assertions r(a, b)
- · IceCream(d_2): dish d_2 is of type IceCream
- · hasDessert (m, d_2) : menu m is connected via hasDessert to dish d_2

TBox contains general knowledge about the domain of interest

- finite set of **axioms** (details on syntax to follow)
- · IceCream is a subclass of Dessert
- hasCourse connects Menus to Dishes
- $\cdot\,$ every Menu is connected to at least one dish via hasCourse

· conjunction (\Box), disjunction (\Box), negation (\neg)

Dessert □ ¬IceCream Pizza ⊔ PastaDish

· conjunction (\Box), disjunction (\sqcup), negation (\neg)

Dessert □ ¬lceCream Pizza ⊔ PastaDish

· restricted forms of existential and universal quantification (\exists , \forall)

∃contains.Meat	∃hasCourse.⊤	Dish ⊓ ∀contains.¬Meat	
	(⊤acts as a "	wildcard". denotes set of all thi	ngs)

· conjunction (\Box), disjunction (\sqcup), negation (\neg)

Dessert □ ¬lceCream Pizza ⊔ PastaDish

· restricted forms of existential and universal quantification (\exists , \forall)

∃contains.Meat	∃hasCourse.⊤	Dish ⊓ ∀contains.¬Meat	
	($ op$ acts as a "	wildcard". denotes set of all thir	ngs)

 \cdot inverse (-) and composition (.) of roles

 $hasCourse^{-} \qquad contains \cdot contains$

· conjunction (\Box), disjunction (\sqcup), negation (\neg)

Dessert □ ¬lceCream Pizza ⊔ PastaDish

· restricted forms of existential and universal quantification (\exists , \forall)

∃contains.Meat	∃hasCourse.⊤	Dish ⊓ ∀contains.¬Meat	
	(⊤acts as a "	wildcard", denotes set of all thi	ngs)

 \cdot inverse (-) and composition (.) of roles

 $hasCourse^{-} \qquad contains \cdot contains$

Note: set of available constructors depends on the particular DL!

Concept inclusions $C \sqsubseteq D$ (*C*, *D* possibly complex concepts)

lceCream ⊑ Dessert	Menu ⊑ ∃hasCourse.⊤	Spicy □ Dish ⊑ SpicyDish
--------------------	---------------------	--------------------------

Role inclusions $R \sqsubseteq S$ (*R*, *S* possibly complex roles)

has $lngred \sqsubseteq contains$ ingred $Of^- \sqsubseteq has lngred$ has $Dessert \sqsubseteq has Course$

Note: type and syntax of axioms depends on the particular DL!

"Standard" expressive description logic *ALC*:

- · Concept constructors: $C := \top |A| \neg C |C \sqcap C |C \sqcup C | \exists r.C | \forall r.C$
- $\cdot\,$ TBox axioms: only concept inclusions

"Lightweight" description logic \mathcal{EL}

- Concept constructors: $C := \top |A| C \sqcap C |\exists r.C$
- · TBox axioms: only concept inclusions

"Standard" expressive description logic *ALC*:

- · Concept constructors: $C := \top |A| \neg C |C \sqcap C |C \sqcup C |\exists r.C |\forall r.C$
- $\cdot\,$ TBox axioms: only concept inclusions

"Lightweight" description logic \mathcal{EL}

- Concept constructors: $C := \top |A| C \sqcap C |\exists r.C$
- · TBox axioms: only concept inclusions

ALCI = extension of ALC with inverse roles (r⁻)

 $\mathcal{ELH} = \mathcal{EL} + \text{role inclusions} (r \sqsubseteq s)$

DL SEMANTICS

Interpretation *I* ("possible world")

- · **domain of objects** $\Delta^{\mathcal{I}}$ (possibly infinite set)
- · **interpretation function** $\cdot^{\mathcal{I}}$ that maps
 - · **concept name** $A \rightsquigarrow$ set of objects $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - · role name $r \rightsquigarrow$ set of pairs of objects $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - · individual name $a \rightsquigarrow \text{object } a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

DL SEMANTICS

Interpretation *I* ("possible world")

- · **domain of objects** $\Delta^{\mathcal{I}}$ (possibly infinite set)
- · interpretation function $\cdot^{\mathcal{I}}$ that maps
 - · **concept name** $A \rightsquigarrow$ set of objects $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - · role name $r \rightsquigarrow$ set of pairs of objects $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - · individual name $a \rightsquigarrow \text{object } a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

Interpretation function $\cdot^{\mathcal{I}}$ extends to complex concepts and roles:

Т	$\Delta^{\mathcal{I}}$
\perp	Ø
$\neg C$	$\Delta^{\mathcal{I}} \setminus \mathcal{C}^{\mathcal{I}}$
$C_1 \sqcap C_2$	$C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}$
$\exists R.C$	$\{d_1 \mid \text{there exists } (d_1, d_2) \in R^{\mathcal{I}} \text{ with } d_2 \in C^{\mathcal{I}}\}$
$\forall R.C$	$\{d_1 \mid d_2 \in C^{\mathcal{I}} \text{ for all } (d_1, d_2) \in R^{\mathcal{I}}\}$
r	$\{(d_2, d_1) \mid (d_1, d_2) \in r^{\mathcal{I}}\}$

Satisfaction in an interpretation

- $\cdot \mathcal{I}$ satisfies $C \sqsubseteq D \quad \Leftrightarrow \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\cdot \ \mathcal{I} \text{ satisfies } R \sqsubseteq S \quad \Leftrightarrow \quad R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$

Satisfaction in an interpretation

- $\cdot \mathcal{I}$ satisfies $C \sqsubseteq D \quad \Leftrightarrow \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\cdot \mathcal{I}$ satisfies $R \sqsubseteq S \iff R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$
- $\cdot \mathcal{I}$ satisfies $A(a) \Leftrightarrow a^{\mathcal{I}} \in A^{\mathcal{I}}$
- $\cdot \mathcal{I} \text{ satisfies } r(a,b) \quad \Leftrightarrow \quad (a^{\mathcal{I}},b^{\mathcal{I}}) \in r^{\mathcal{I}}$

Satisfaction in an interpretation

- $\cdot \mathcal{I}$ satisfies $C \sqsubseteq D \quad \Leftrightarrow \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\cdot \mathcal{I}$ satisfies $R \sqsubseteq S \iff R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$
- $\cdot \mathcal{I}$ satisfies $A(a) \Leftrightarrow a^{\mathcal{I}} \in A^{\mathcal{I}}$
- $\cdot \mathcal{I} \text{ satisfies } r(a,b) \quad \Leftrightarrow \quad (a^{\mathcal{I}},b^{\mathcal{I}}) \in r^{\mathcal{I}}$

Model of a KB \mathcal{K} = interpretation that satisfies all statements in \mathcal{K}

 \mathcal{K} is satisfiable = \mathcal{K} has at least one model

 \mathcal{K} entails α (written $\mathcal{K} \models \alpha$) = every model \mathcal{I} of \mathcal{K} satisfies α

Note: ABoxes are interpreted under the open-world assumption

INTRODUCTION TO OMQA

Instance queries (IQs): find instances of a given concept or role (aka atomic queries)

$A(x) \text{where } A \in N_0$	concept instance query
$r(x, y)$ where $r \in N$	R role instance query

Instance queries (IQs): find instances of a given concept or role (aka atomic queries)

A(x)where $A \in N_C$ concept instance queryr(x, y)where $r \in N_R$ role instance query

To query for a complex concept *C*, take $A_C(x)$ for fresh $A_C \in N_C$ and add $C \sqsubseteq A_C$ to the TBox

Instance queries (IQs): find instances of a given concept or role (aka atomic queries)

A(x)where $A \in N_C$ concept instance queryr(x, y)where $r \in N_R$ role instance query

To query for a complex concept *C*, take $A_C(x)$ for fresh $A_C \in N_C$ and add $C \sqsubseteq A_C$ to the TBox

Remarks:

- · Instance query answering is often called instance checking
- · Focus of OMQA until mid-2000s

(UNIONS OF) CONJUNCTIVE QUERIES

IQs are quite restricted: no selections and joins as in DB queries

IQs are quite restricted: no selections and joins as in DB queries

Most work on OMQA adopts (unions of) conjunctive queries (CQs).

IQs are quite restricted: no selections and joins as in DB queries

Most work on OMQA adopts (unions of) conjunctive queries (CQs).

A conjunctive query (CQ) takes the form

 $q(\vec{x}) = \exists \vec{y}. P_1(\vec{t_1}) \land \cdots \land P_n(\vec{t_n})$

where every P_i is a concept or role name and $\vec{t_i}$ contains individual names and/or variables from $\vec{x} \cup \vec{y}$
IQs are quite restricted: no selections and joins as in DB queries

Most work on OMQA adopts (unions of) conjunctive queries (CQs).

A conjunctive query (CQ) takes the form

 $q(\vec{x}) = \exists \vec{y}. P_1(\vec{t_1}) \land \cdots \land P_n(\vec{t_n})$

where every P_i is a concept or role name and $\vec{t_i}$ contains individual names and/or variables from $\vec{x} \cup \vec{y}$

A union of CQs (UCQ) takes the form of a disjunction of CQs:

 $q_1(\vec{x}) \lor \cdots \lor q_n(\vec{x})$

Each KB gives rise to multiple interpretations (its models)

 $\cdot\,$ want tuple to be an answer w.r.t. all models of KB

Each KB gives rise to multiple interpretations (its models)

• want tuple to be an **answer w.r.t. all models of KB**

Formally: Call a tuple $\vec{a} = (a_1, \dots, a_n)$ of individuals from \mathcal{A} a certain answer to *n*-ary query *q* over DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ if

 $(a_1^{\mathcal{I}}, \ldots, a_n^{\mathcal{I}}) \in ans(q, \mathcal{I})$ for every model \mathcal{I} of \mathcal{K}

in which case we write $\mathcal{K} \models q(\vec{a})$

Each KB gives rise to multiple interpretations (its models)

• want tuple to be an answer w.r.t. all models of KB

Formally: Call a tuple $\vec{a} = (a_1, \dots, a_n)$ of individuals from \mathcal{A} a certain answer to *n*-ary query *q* over DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ if

 $(a_1^{\mathcal{I}}, \ldots, a_n^{\mathcal{I}}) \in ans(q, \mathcal{I})$ for every model \mathcal{I} of \mathcal{K}

in which case we write $\mathcal{K} \models q(\vec{a})$

Ontology-mediated query answering (OMQA) = computing certain answers to queries

View OMQA as a **decision problem** (yes-or-no question):

- PROBLEM: Q answering in \mathcal{L} (Q a query language, \mathcal{L} a DL)
- INPUT: An *n*-ary query $q \in Q$, an ABox A, a \mathcal{L} -TBox \mathcal{T} , and a tuple $\vec{a} \in \operatorname{Ind}(\mathcal{A})^n$
- QUESTION: **Does** T, $A \models q(\vec{a})$?

View OMQA as a **decision problem** (yes-or-no question):

- PROBLEM: Q answering in \mathcal{L} (Q a query language, \mathcal{L} a DL)
- INPUT: An *n*-ary query $q \in Q$, an ABox A, a \mathcal{L} -TBox \mathcal{T} , and a tuple $\vec{a} \in \text{Ind}(\mathcal{A})^n$
- QUESTION: **Does** T, $A \models q(\vec{a})$?

Combined complexity: in terms of size of whole input

Data complexity: in terms of size of A only

- view rest of input as fixed (of constant size)
- motivation: ABox typically much larger than rest of input

Note: use |A| to denote size of A (similarly for |T|, |q|, etc.)

Recall the DL ALC: $C := \top |A| \neg C |C \square C |C \square C |\exists r.C |\forall r.C$

Satisfiability, IQ answering, and CQ answering in \mathcal{ALC} are:

- · coNP-complete in data complexity
- · EXPTIME-complete in combined complexity

The situation is even worse for ALCI (= ALC + inverse roles):

- · coNP-complete in data complexity
- · 2EXPTIME-complete(!) in combined complexity

DL-Lite family of DLs

(basis for OWL 2 QL)

- $\cdot\,$ designed with OMQA in mind
- · capture main constructs from conceptual modelling
- · key technique: query rewriting (~ backward chaining)

DL-Lite family of DLs

(basis for OWL 2 QL)

- $\cdot\,$ designed with OMQA in mind
- · capture main constructs from conceptual modelling
- \cdot key technique: query rewriting (~ backward chaining)

\mathcal{EL} family of DLs

(basis for OWL 2 EL)

- $\cdot\,$ designed to allow efficient reasoning with large ontologies
- $\cdot\,$ well suited for medical and life science applications
- \cdot key technique: saturation (~ forward chaining)

DL-Lite family of DLs

(basis for OWL 2 QL)

- $\cdot\,$ designed with OMQA in mind
- · capture main constructs from conceptual modelling
- \cdot key technique: query rewriting (~ backward chaining)

\mathcal{EL} family of DLs

(basis for OWL 2 EL)

- $\cdot\,$ designed to allow efficient reasoning with large ontologies
- $\cdot\,$ well suited for medical and life science applications
- \cdot key technique: saturation (~ forward chaining)

Commonality: no disjunction, existence of canonical model

OMQA WITH LIGHTWEIGHT DLS

We present the dialect $DL-Lite_R$ (which underlies OWL2 QL profile).

DL-Lite_R TBoxes contain

- concept inclusions $B_1 \sqsubseteq B_2$, $B_1 \sqsubseteq \neg B_2$
- · role inclusions $S_1 \sqsubseteq S_2$, $S_1 \sqsubseteq \neg S_2$

where $B := A \mid \exists S \quad S := r \mid r^-$

We present the dialect $DL-Lite_R$ (which underlies OWL2 QL profile).

DL-Lite_R TBoxes contain

- concept inclusions $B_1 \sqsubseteq B_2$, $B_1 \sqsubseteq \neg B_2$
- · role inclusions $S_1 \sqsubseteq S_2$, $S_1 \sqsubseteq \neg S_2$

where $B := A \mid \exists S \quad S := r \mid r^-$

Example TBox inclusions:

- · Every professor teaches something: Prof \sqsubseteq Eteaches
- \cdot Everything that is taught is a course: <code> \exists teaches⁻ \sqsubseteq Course</code>
- $\cdot \,$ Head of dept implies member of dept: headOf \sqsubseteq memberOf

Idea: reduce OMQA to database query evaluation

- · rewriting step: TBox T + query $q \rightsquigarrow$ first-order (SQL) query q'
- evaluation step: evaluate query q' using relational DB system

Advantage: harness efficiency of relational database systems

Idea: reduce OMQA to database query evaluation

- · rewriting step: TBox T + query $q \rightsquigarrow$ first-order (SQL) query q'
- evaluation step: evaluate query q' using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting

· FO query q' is an FO-rewriting of q w.r.t. TBox \mathcal{T} iff for every ABox \mathcal{A} :

 $\mathcal{T}, \mathcal{A} \models q(\vec{a}) \quad \Leftrightarrow \quad DB_{\mathcal{A}} \models q'(\vec{a})$

Informally: evaluating q' over \mathcal{A} (viewed as DB) gives correct result

Idea: reduce OMQA to database query evaluation

- · rewriting step: TBox T + query $q \rightsquigarrow$ first-order (SQL) query q'
- \cdot evaluation step: evaluate query q' using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting

· FO query q' is an FO-rewriting of q w.r.t. TBox T iff for every ABox A:

 $\mathcal{T}, \mathcal{A} \models q(\vec{a}) \quad \Leftrightarrow \quad DB_{\mathcal{A}} \models q'(\vec{a})$

Informally: evaluating q' over \mathcal{A} (viewed as DB) gives correct result

Good news: every CQ and DL-Lite ontology has FO-rewriting

TBox:

ItalDish ⊑ Dish VegDish ⊑ Dish Dish ⊑ ∃hasIngred ∃hasCourse⁻⁻ ⊑ Dish hasMain ⊑ hasCourse hasDessert ⊑ hasCourse

Query:

$$q(x) = \text{Dish}(x)$$

We compute a rewriting of q(x) w.r.t. \mathcal{T} step by step:

TBox:

ItalDish ⊑ Dish VegDish ⊑ Dish Dish ⊑ ∃hasIngred ∃hasCourse⁻⁻ ⊑ Dish hasMain ⊑ hasCourse hasDessert ⊑ hasCourse

Query:

$$q(x) = \text{Dish}(x)$$

We compute a rewriting of q(x) w.r.t. \mathcal{T} step by step:

q'(x) = Dish(x)

TBox:

ItalDish ⊑ Dish VegDish ⊑ Dish Dish ⊑ ∃hasIngred ∃hasCourse⁻⁻ ⊑ Dish hasMain ⊑ hasCourse hasDessert ⊑ hasCourse

Query:

$$q(x) = \text{Dish}(x)$$

We compute a rewriting of q(x) w.r.t. \mathcal{T} step by step:

 $q'(x) = \text{Dish}(x) \lor \text{ItalDish}(x)$

TBox:

ItalDish ⊑ Dish VegDish ⊑ Dish Dish ⊑ ∃hasIngred ∃hasCourse⁻⁻ ⊑ Dish hasMain ⊑ hasCourse hasDessert ⊑ hasCourse

Query:

$$q(x) = \text{Dish}(x)$$

We compute a rewriting of q(x) w.r.t. \mathcal{T} step by step:

 $q'(x) = \text{Dish}(x) \lor \text{ItalDish}(x) \lor \text{VegDish}(x)$

TBox:

ItalDish ⊑ Dish VegDish ⊑ Dish Dish ⊑ ∃hasIngred ∃hasCourse⁻⁻ ⊑ Dish hasMain ⊑ hasCourse hasDessert ⊑ hasCourse

Query:

$$q(x) = \text{Dish}(x)$$

We compute a rewriting of q(x) w.r.t. T step by step:

 $q'(x) = \text{Dish}(x) \lor \text{ItalDish}(x) \lor \text{VegDish}(x) \lor \exists y.\text{hasCourse}(y, x)$

ItalDish ⊑ Dish VegDish ⊑ Dish Dish ⊑ ∃hasIngred ∃hasCourse⁻ ⊑ Dish hasMain ⊑ hasCourse hasDessert ⊑ hasCourse Query:

q(x) = Dish(x)

We compute a rewriting of q(x) w.r.t. \mathcal{T} step by step:

 $q'(x) = \text{Dish}(x) \lor \text{ItalDish}(x) \lor \text{VegDish}(x) \lor \exists y.\text{hasCourse}(y, x)$ $\lor \exists y.\text{hasMain}(y, x)$

ItalDish ⊑ Dish VegDish ⊑ Dish Dish ⊑ ∃hasIngred ∃hasCourse⁻ ⊑ Dish hasMain ⊑ hasCourse hasDessert ⊑ hasCourse Query:

q(x) = Dish(x)

We compute a rewriting of q(x) w.r.t. \mathcal{T} step by step:

 $q'(x) = \text{Dish}(x) \lor \text{ItalDish}(x) \lor \text{VegDish}(x) \lor \exists y.\text{hasCourse}(y, x)$ $\lor \exists y.\text{hasMain}(y, x) \lor \exists y.\text{hasDessert}(y, x)$

ItalDish ⊑ Dish VegDish ⊑ Dish Dish ⊑ ∃hasIngred ∃hasCourse⁻⁻ ⊑ Dish hasMain ⊑ hasCourse hasDessert ⊑ hasCourse

ABox:

hasMain(m, d₁) hasDessert(m, d₂) VegDish(d₃)

 $q'(x) = \text{Dish}(x) \lor \text{ItalDish}(x) \lor \text{VegDish}(x) \lor \exists y.\text{hasCourse}(y, x)$ $\lor \exists y.\text{hasMain}(y, x) \lor \exists y.\text{hasDessert}(y, x)$

ItalDish ⊑ Dish VegDish ⊑ Dish Dish ⊑ ∃hasIngred ∃hasCourse⁻ ⊑ Dish hasMain ⊑ hasCourse hasDessert ⊑ hasCourse

ABox:

hasMain(m, d₁) hasDessert(m, d₂) VegDish(d₃)

 $q'(x) = \text{Dish}(x) \lor \text{ItalDish}(x) \lor \text{VegDish}(x) \lor \exists y.\text{hasCourse}(y, x)$ $\lor \exists y.\text{hasMain}(y, x) \lor \exists y.\text{hasDessert}(y, x)$

Certain answers:

 d_1 , because of the disjunct $\exists y$.hasMain(y, x) d_2 , because of the disjunct $\exists y$.hasDessert(y, x) d_3 , because of the disjunct VegDish(x)

 $\{ \exists coordinates \sqsubseteq Prof coordinates \sqsubseteq involved 100S \sqsubseteq IntroC \}$

Query: $Prof(x) \land involved(x, y) \land IntroC(y)$

 $\{ \exists coordinates \sqsubseteq Prof coordinates \sqsubseteq involved 100S \sqsubseteq IntroC \}$

Query: $Prof(x) \land involved(x, y) \land IntroC(y)$

Obtain FO-rewriting by taking disjunction of q_0 and the CQs:

 $q_{1} = \exists z \operatorname{coordinates}(x, z) \land \operatorname{involved}(x, y) \land \operatorname{IntroC}(y)$ $q_{2} = \operatorname{coordinates}(x, y) \land \operatorname{IntroC}(y)$ $q_{3} = \operatorname{Prof}(x) \land \operatorname{coordinates}(x, y) \land \operatorname{100S}(y)$ $q_{4} = \exists z \operatorname{coordinates}(x, z) \land \operatorname{involved}(x, y) \land \operatorname{100S}(y)$ $q_{5} = \operatorname{coordinates}(x, y) \land \operatorname{100S}(y)$

Data complexity:

- rewriting takes constant time, yields FO query
- · upper bound from FO query evaluation: AC_0 ($AC_0 \subseteq LOGSPACE \subseteq P$)
- · CQ answering is in AC₀ for data complexity

Data complexity:

- · rewriting takes constant time, yields FO query
- \cdot upper bound from FO query evaluation: $AC_0 \quad (AC_0 \subseteq LOgSPACE \subseteq P)$
- · CQ answering is in AC₀ for data complexity

Combined complexity:

- $\cdot\,$ 'guess' a disjunct of the rewriting and how to map it into ABox
- · CQ answering is NP-complete (same as for DBs)
- · IQ answering is NLOGSPACE-complete

(NLOGSPACE \subset P)

Data complexity:

- rewriting takes constant time, yields FO query
- \cdot upper bound from FO query evaluation: $AC_0 \quad (AC_0 \subseteq LOGSPACE \subseteq P)$
- · CQ answering is in AC₀ for data complexity

Combined complexity:

- $\cdot\,$ 'guess' a disjunct of the rewriting and how to map it into ABox
- CQ answering is NP-complete (same as for DBs)
- · IQ answering is NLOGSPACE-complete

(NLOGSPACE \subseteq P)

Note: Same bounds hold for several other DL-Lite dialects

Next consider IQ answering in *EL*.

Assume \mathcal{EL} TBoxes given in normal form: axioms of the forms

 $A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B$ $A \sqsubseteq \exists r.B$ $\exists r.A \sqsubseteq B$

 $(A, A_i, B \in N_C)$

Next consider IQ answering in \mathcal{EL} .

Assume \mathcal{EL} TBoxes given in normal form: axioms of the forms

$A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B$ $A \sqsubseteq \exists r.B$ $\exists r.A \sqsubseteq B$

 $(A, A_i, B \in N_C)$

Cannot use FO query rewriting approach for \mathcal{EL} :

no FO-rewriting of A(x) w.r.t. $\mathcal{T} = \{ \exists r.A \sqsubseteq A \}$

Next consider IQ answering in \mathcal{EL} .

Assume \mathcal{EL} TBoxes given in normal form: axioms of the forms

$A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B$ $A \sqsubseteq \exists r.B$ $\exists r.A \sqsubseteq B$

 $(A, A_i, B \in N_C)$

Cannot use FO query rewriting approach for \mathcal{EL} :

no FO-rewriting of A(x) w.r.t. $\mathcal{T} = \{\exists r.A \sqsubseteq A\}$

We present a saturation-based approach.

TBox rules

$$\frac{A \sqsubseteq B_i \ (1 \le i \le n) \quad B_1 \sqcap \ldots \sqcap B_n \sqsubseteq D}{A \sqsubseteq D} \ T1 \qquad \frac{A \sqsubseteq B \quad B \sqsubseteq \exists r.D}{A \sqsubseteq \exists r.D} \ T2$$
$$\frac{A \sqsubseteq \exists r.B \quad B \sqsubseteq D \quad \exists r.D \sqsubseteq E}{A \sqsubseteq E} \ T3$$

ABox rules

$$\frac{A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B \quad A_i(a) \ (1 \le i \le n)}{B(a)} \text{ A1 } \qquad \frac{\exists r.B \sqsubseteq A \quad r(a,b) \quad B(b)}{A(a)} \text{ A2}$$

Algorithm: apply rules exhaustively, check if A(a) (r(a, b)) is present
EXAMPLE: SATURATION IN EL

- Peperoncino \sqsubseteq Spicy (6)
- \exists hasIngred.Spicy \sqsubseteq Spicy (7)
- Spicy \sqcap Dish \sqsubseteq SpicyDish (8)
 - PenneArrabiata(p). (9)

- PenneArrabiata $\sqsubseteq \exists has Ingred. Arrabiata Sauce$ (1)
 - PenneArrabiata \sqsubseteq PastaDish (2)
 - PastaDish⊑Dish (3)
 - PastaDish $\sqsubseteq \exists$ hasIngred.Pasta (4)
 - ArrabiataSauce $\sqsubseteq \exists hasIngred.Peperoncino$ (5)

EXAMPLE: SATURATION IN EL

P	enneArrabiata ⊑ ∃hasIngred.ArrabiataSauce PenneArrabiata ⊑ PastaDish PastaDish ⊑ Dish PastaDish ⊑ ∃hasIngred.Pasta		Peperoncino \sqsubseteq Spicy (6 \exists hasIngred.Spicy \sqsubseteq Spicy (7 Spicy \sqcap Dish \sqsubseteq SpicyDish (8 PenneArrabiata(p), (9)	
	ArrabiataSauce $\sqsubseteq \exists hasIngred.Peperoncino$	(5)	remeanabla	α(β). ())
	ArrabSauce ⊑ Spicy		T3 : (5), (6), (7)	(10)
	PenneArrab ⊑ Spicy		T3 : (1) , (10), (7)	(11)
	PenneArrab ⊑ Dish		T1 : (2), (3)	(12)
	PenneArrab ⊑ ∃hasIngred.Pasta		T2 : (2), (4)	(13)
	PenneArrab ⊑ SpicyDish		T1 : (11), (12), (8)	(14)
	Spicy(p)		A1 : (11), (9)	(15)
	Dish (p)		A1 : (12), (9)	(16)
	SpicyDish (p)		A1 : (16), (15)	(17)

Saturation approach is sound: everything derived is entailed

Saturation approach is **sound**: everything derived is entailed Also **complete for instance checking**:

Theorem Let \mathcal{K} be an \mathcal{EL} knowledge base, and let \mathcal{K}' be the result of saturating \mathcal{K} . For every ABox assertion α , we have:

 $\mathcal{K} \models \alpha$ iff $\alpha \in \mathcal{K}'$

Saturation approach is **sound**: everything derived is entailed Also **complete for instance checking**:

Theorem Let \mathcal{K} be an \mathcal{EL} knowledge base, and let \mathcal{K}' be the result of saturating \mathcal{K} . For every ABox assertion α , we have:

 $\mathcal{K} \models \alpha \quad \text{iff} \quad \alpha \in \mathcal{K}'$

Note: does not make all consequences explicit

- · can have infinitely many implied axioms → would not terminate!
- \cdot so: only complete for some reasoning tasks

Saturation approach is **sound**: everything derived is entailed Also **complete for instance checking**:

Theorem Let \mathcal{K} be an \mathcal{EL} knowledge base, and let \mathcal{K}' be the result of saturating \mathcal{K} . For every ABox assertion α , we have:

 $\mathcal{K} \models \alpha \quad \text{iff} \quad \alpha \in \mathcal{K}'$

Note: does not make all consequences explicit

- · can have infinitely many implied axioms ~> would not terminate!
- \cdot so: only complete for some reasoning tasks

Runs in **polynomial time** in $|\mathcal{K}|$. This is **optimal**:

IQ answering in \mathcal{EL} is P-complete for data & combined complexity

Complexity of CQ answering in \mathcal{EL} :

- P-complete in data complexity
 - · can be shown e.g. by rewriting into Datalog
- · NP-complete in combined complexity

(scale polynomially in $|\mathcal{A}|$)

Complexity of CQ answering in \mathcal{EL} :

- · P-complete in data complexity
 - · can be shown e.g. by rewriting into Datalog
- · NP-complete in combined complexity

Combined approach:

- saturate ABox using the TBox axioms
 - · introduce new individuals to witness existentials on LHS (A $\sqsubseteq \exists r.B$)

(scale polynomially in $|\mathcal{A}|$)

Complexity of CQ answering in \mathcal{EL} :

- · P-complete in data complexity
 - · can be shown e.g. by rewriting into Datalog
- · NP-complete in combined complexity

Combined approach:

- saturate ABox using the TBox axioms
 - · introduce new individuals to witness existentials on LHS (A $\sqsubseteq \exists r.B$)
 - $\cdot\,$ to ensure finite: reuse individuals as witnesses
- \cdot evaluate query on saturated ABox \Rightarrow superset of certain answers
- · two strategies to **block unsound answers**:
 - $\cdot\,$ add extra conditions to query
 - $\cdot\,$ post-processing to identify and remove false answers

(scale polynomially in $|\mathcal{A}|$)

RESEARCH TRENDS IN OMQA

Lots of work on **developing** and **implementing efficient OMQA** algorithms

Focus mostly on **DL-Lite** (and related dialects):

- · First algorithm PerfectRef proposed in mid-2000's
- · Rewrites into UCQs, implemented in QUONTO
- · Improved versions proposed in REQUIEM, PRESTO, RAPID, ...
- Some algorithms rewrite into positive existential queries or Datalog programs instead of UCQs
- · Resulting queries are smaller, can be easier to evaluate

Tractable classes, fragments of lower complexity

Rewriting engines for other Horn DLs also developed, e.g.,

- · **REQUIEM** and the related **KYRIE** cover several \mathcal{EL} dialects
- \cdot CLIPPER, and recently RAPID cover Horn-SHIQ

They usually rewrite into **Datalog programs**

- Much attention devoted to understanding the limits of rewritability and size of rewritings
- When are polynomial-size rewritings possible?
- Can we give bounds on the size of rewritings?
- Which non-DL-Lite ontologies can be rewritten into FO-queries?
- · study specific pairs (q, T), called **ontology-mediated queries**

Beyond classical OMQA

- · inconsistency-tolerant query answering
- probabilistic query answering
- · privacy-aware query answering
- · temporal query answering
- Support for building and maintaining OMQA systems
- module extraction
- ontology evolution
- · query inseparability and emptiness

Improving the **usability** of OMQA systems

- \cdot interfaces and support for query formulation
- explaining query (non-)answers

QUESTIONS?

30th anniversary DL workshop July 18-21, 2017 Montpellier