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E»_ ¢

patient data medical knowledge user query
“Melanie has listeriosis” “Listeriosis & Lyme disease “Find all patients with
“Paul has Lyme disease”  are bacterial infections”  bacterial infections”

expected answers: Melanie, Paul
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WHAT ARE ONTOLOGIES GOOD FOR?

To standardize the terminology of an application domain
- meaning of terms is constrained, so less misunderstandings

- by adopting a common vocabulary, easy to share information
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WHAT ARE ONTOLOGIES GOOD FOR?

To standardize the terminology of an application domain
- meaning of terms is constrained, so less misunderstandings

- by adopting a common vocabulary, easy to share information

To present an
- ontology can be used to , making it

- especially useful when

To support automated reasoning

- uncover implicit connections between terms, errors in modelling

- exploit knowledge in the ontology during query answering, to get
back a more complete set of answers to queries
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APPLICATIONS OF OMQA: MEDICINE

General medical ontologies: SNOMED CT (~ 400,000 terms!), GALEN
Specialized ontologies: FMA (anatomy), NCI (cancer), ...
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Querying & exchanging medical records (find patients for medical trials)
- myocardial infarction vs. Ml vs. heart attack vs. 410.0

Supports tools for (scans, x-rays) o



APPLICATIONS OF OMQA: LIFE SCIENCES

Hundreds of ontologies at BioPortal ( ):
Gene Ontology (GO), Cell Ontology, Pathway Ontology, Plant Anatomy, ...

Help scientists share, query, & visualize experimental data
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APPLICATIONS OF OMQA: ENTREPRISE INFORMATION SYSTEMS

Companies and organizations have lots of data
to support decision-making

Example industrial projects:
- Public debt data: Sapienza Univ. & Italian Department of Treasury
- Energy sector: Optique EU project (several univ, StatOil, & Siemens)
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OUR FOCUS: DESCRIPTION LOGICS

Ontologies formulated using description logics (DLs):
- family of

- basis for OWL web ontology language (W3C)
- range from fairly simple to highly expressive

- complexity of query answering well understood
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OUR FOCUS: DESCRIPTION LOGICS

Ontologies formulated using description logics (DLs):
- family of

- basis for OWL web ontology language (W3C)

- range from fairly simple to highly expressive

- complexity of query answering well understood

Of particular interest: Horn description logics

- good computational properties, well suited for OMQA
- still expressive enough for interesting applications
- basis for OWL 2 QL and OWL 2 EL profiles
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PLAN FOR THIS TALK

Basics of DLs

OMQA with Lightweight DLs

Research Trends in OMQA
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DL BASICS

Building blocks of DLs:

- concept names (unary predicates, classes)
IceCream, Pizza, Meat, SpicyDish, Dish, Menu, Restaurant, ...

- role names (binary predicates, properties)

haslingred, hasCourse, hasDessert, serves, ...
(constants)
menu32, pastadish17, d3, rest156, r12, ...
(specific menus, dishes, restaurants ...)

Nc / Ng / N;: set of all concept / role / names
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DL KNOWLEDGE BASES

Knowledge base (KB) = ABox (data) + TBox (ontology)

ABox contains facts about specific individuals

- finite set of concept assertions A(a) and role assertions r(a, b)
- IceCream(d,): dish d, is of type IceCream
- hasDessert(m, d,): menu m is connected via hasDessert to dish d,
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DL KNOWLEDGE BASES

Knowledge base (KB) = ABox (data) + TBox (ontology)

ABox contains facts about specific individuals

- finite set of concept assertions A(a) and role assertions r(a, b)
- IceCream(d,): dish d, is of type IceCream

- hasDessert(m, d,): menu m is connected via hasDessert to dish d,

TBox contains general knowledge about the domain of interest

- finite set of axioms (details on syntax to follow)
- IceCream is a subclass of Dessert
- hasCourse connects Menus to Dishes

- every Menu Is connected to at least one dish via hasCourse

/61



CONCEPT AND ROLE CONSTRUCTORS

Can build complex concepts and roles using constructors:

- conjunction (1), disjunction (L1), negation (—)

Dessert 1 —lceCream Pizza LI PastaDish
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CONCEPT AND ROLE CONSTRUCTORS

Can build complex concepts and roles using constructors:
- conjunction (1), disjunction (L1), negation (—)

Dessert 1 —lceCream Pizza LI PastaDish

- restricted forms of existential and universal quantification (3, ¥)

Jcontains.Meat JhasCourse. T Dish rYcontains.—Meat

(T acts as a “wildcard”, denotes set of all things)
- inverse (7) and composition (-) of roles
hasCourse™ contains - contains

. set of available constructors !
12/41



TBOX AXIOMS

Concept inclusions C C D (C, D possibly complex concepts)

IceCream C Dessert Menu C FhasCourse. T Spicy M Dish E SpicyDish

Role inclusions R C S (R, S possibly complex roles)

haslingred C contains ingredOf™ C haslngred hasDessert C hasCourse

Note: type and syntax of axioms depends on the particular DL!
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EXAMPLE DLS

“Standard” expressive description logic ALC:

- Concept constructors: C:=T [A|=C|CRAC|CUC|3r.C|Vr.C
- TBox axioms: only concept inclusions

“Lightweight” description logic ££

- Concept constructors: [C:=T |A|CRC|3r.C
- TBox axioms: only concept inclusions

14/41
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“Standard” expressive description logic ALC:

- Concept constructors: C:=T [A|=C|CRAC|CUC|3r.C|Vr.C
- TBox axioms: only concept inclusions

“Lightweight” description logic ££

- Concept constructors: [C:=T |A|CRC|3r.C
- TBox axioms: only concept inclusions

ALCT = extension of ALC with inverse roles (1)

:g£+
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DL SEMANTICS

”

Interpretation Z (“possible world”)

- domain of objects AZ (possibly infinite set)

that maps

~ set of objects
~ set of pairs of objects
~ object
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DL SEMANTICS

”

Interpretation Z (“possible world”)

- domain of objects AZ (possibly infinite set)

that maps

~ set of objects
~ set of pairs of objects
~ object

Interpretation function -Z extends to complex concepts and roles:

T AT
il 0
—C AT\ T

GNG GInGgt

JR.C  {di | there exists (di,d>) € RT with d, € C*}
VR.C {di | d» € C* forall (di,d,) € RT}

r- {(d2,d) | (dv,d2) € rF}
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SEMANTICS OF DL KBS

Satisfaction in an interpretation

- IsatisfiesCCD < cfcp?
- TsatisflesRCS « RLCS?
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SEMANTICS OF DL KBS

Satisfaction in an interpretation

- IsatisiesCCD <« cfcp?
- TsatisflesRCS « RLCS?
- T satisflesA(a) < af eAl
- T satisfies r(a,b) <« (af,bf)er”
Model of a KB K = interpretation that satisfies all statements in &
K is satisfiable = K has at least one model
(written ) = every model Z of K satisfies «

Note: ABoxes are interpreted under the open-world assumption
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INSTANCE QUERIES

Instance queries (1Qs): find instances of a given concept or role
(aka atomic queries)

A(x) where A e Nc¢ concept instance query

r(x,y) wherer e N role instance query
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INSTANCE QUERIES

Instance queries (1Qs): find instances of a given concept or role
(aka atomic queries)

A(x) where A € N¢ concept instance query

r(x,y) wherer e Ng role instance query
To query for a , take for fresh Ac € N¢ and
add to the TBox
Remarks:

- Instance query answering is often called instance checking
- Focus of OMQA until mid-2000s
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(UNIONS OF) CONJUNCTIVE QUERIES

IQs are quite restricted: no selections and joins as in DB queries
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(UNIONS OF) CONJUNCTIVE QUERIES

IQs are quite restricted: no selections and joins as in DB queries
Most work on OMQA adopts
A conjunctive query (CQ) takes the form

q(X) = IY.P1(6) A -+ - A P(tn)

where every P; is a concept or role name
and t; contains individual names and/or variables from XUy

A union of CQs (UCQ) takes the form of a disjunction of CQs:

q1(X) V- -+ Vv gn(X)

19/41



QUERYING DL KNOWLEDGE BASES

Query g of arity n + interpretation Z ~» set of answers ans(q,Z)
(n-tuples of elements from )
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QUERYING DL KNOWLEDGE BASES

Query g of arity n + interpretation Z ~» set of answers ans(q,Z)
(n-tuples of elements from )

gives rise to (its models)

- want tuple to be an answer w.r.t. all models of KB

Formally: Call a tuple d = (ay,. . ., a,) of individuals from A a certain

answer to n-ary query g over DLKB K = (7, A) if
(af,...,ak) € ans(q,T) for every model Z of K

in which case we write £ = g(d)

Ontology-mediated query answering (OMQA)
= computing certain answers to queries
20/41



COMPLEXITY OF OMQA

View OMQA as a decision problem (yes-or-no question):

PROBLEM:
INPUT:

QUESTION:

O answering in £ (Q a query language, £ a DL)
An n-ary query g € Q, an ABox A, a L-TBox T,
and a tuple @ € Ind(A)"

Does T, A = q(d)?
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COMPLEXITY OF OMQA

View OMQA as a decision problem (yes-or-no question):

PROBLEM: O answering in £ (Q a query language, £ a DL)

INPUT: An n-ary query g € Q, an ABox A, a L-TBox T,
and a tuple @ € Ind(A)"

QUESTION:  Does 7, A = q(d)?

:in terms of

Data complexity: in terms of size of A only
- view rest of input as fixed (of constant size)

- motivation: ABox typically much larger than rest of input

Note: use |A| to denote size of A (similarly for |T], |q|, etc.)
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OMQA IN ALC AND ALCI

Recallthe DLALC: [C:=T |A|=C|CnC|CUC|3Ir.C|Vr.C

Satisfiability, IQ answering, and CQ answering in ALC are:

- coNP-complete in data complexity
- EXPTIME-complete in combined complexity

The situation is even worse for ALCT (= ALC + inverse roles):

- coNP-complete in data complexity

(1) in

2241



DATA-TRACTABLE DLS

Negative results led to proposal of new DLs with lower complexity
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DATA-TRACTABLE DLS

Negative results led to proposal of new DLs with lower complexity

DL-Lite family of DLs (basis for OWL 2 QL)

- designed with OMQA in mind
- capture main constructs from conceptual modelling
- key technique: query rewriting (~ backward chaining)

EL family of DLs (basis for OWL 2 EL)

- designed to allow efficient reasoning with large ontologies
- well suited for medical and life science applications
- key technique: saturation (~ forward chaining)

Commonality: , existence of
23/41



OMQA WITH LIGHTWEIGHT DLS




DESCRIPTION LOGIC DL-LITE

We present the dialect DL-Litey (which underlies OWL2 QL profile).

DL-Liteg TBoxes contain

- concept inclusions By C By, B; C =B,

- role inclusions 5, C S;, S C =S,

where
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DESCRIPTION LOGIC DL-LITE

We present the dialect DL-Litey (which underlies OWL2 QL profile).

DL-Liteg TBoxes contain

- concept inclusions By C By, B; C =B,

- role inclusions 5, C S;, S C =S,

where

Example TBox inclusions:
- Every professor teaches something: Prof C Jteaches
- Everything that is taught is a course:

- Head of dept implies member of dept: headOf = memberOf

25/41



QUERY REWRITING

Idea: reduce OMQA to database query evaluation

- rewriting step: TBox 7 + query g ~ first-order (SQL) query q’
- evaluation step: evaluate query g’ using relational DB system

Advantage: harness efficiency of relational database systems
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QUERY REWRITING

Idea: reduce OMQA to database query evaluation

- rewriting step: TBox 7 + query g ~ first-order (SQL) query q’
- evaluation step: evaluate query g’ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion:

- FO query @’ is an FO-rewriting of g w.r.t. TBox 7 iff for every ABox A:
&

Informally:

Good news: every CQ and DL-Lite ontology has FO-rewriting

26/41



EXAMPLE OF QUERY REWRITING

Query:

ItalDish C Dish q(x) = Dish(x)
VegDish C Dish
Dish C Fhaslngred
JhasCourse™ C Dish
hasMain C hasCourse
hasDessert C hasCourse

We compute a rewriting of g(x) w.rt. 7 step by step:
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EXAMPLE OF QUERY REWRITING

ABox:
ItalDish C Dish hasMain(m, d1)
VegDish C Dish hasDessert(m, d,)
Dish C 3haslIngred VegDish(ds)
JhasCourse™ C Dish
hasMain C hasCourse
hasDessert C hasCourse
q'(x) =Dish(x) Vv ItalDish(x) v v Jy.hasCourse(y, x)

V 3y.hasMain(y, x) v Jy.hasDessert(y, x)
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EXAMPLE OF QUERY REWRITING

ABox:
ItalDish C Dish hasMain(m, d1)
VegDish C Dish hasDessert(m, d,)
Dish C 3haslIngred VegDish(ds)
JhasCourse™ C Dish
hasMain C hasCourse
hasDessert C hasCourse
q'(x) =Dish(x) Vv ItalDish(x) v v Jy.hasCourse(y, x)

V 3y.hasMain(y, x) v Jy.hasDessert(y, x)

Certain answers:  dy, because of the disjunct Jy.hasMain(y, x)
d,, because of the disjunct 3y.hasDessert(y, x)
, because of the
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ANOTHER REWRITING EXAMPLE

{ Jcoordinates C Prof coordinates C involved 100S C IntroC}

Query: Prof(x) A involved(x, y) A IntroC(y)
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ANOTHER REWRITING EXAMPLE

{ Jcoordinates C Prof coordinates C involved 100S C IntroC}
Query: Prof(x) A involved(x, y) A IntroC(y)

Obtain FO-rewriting by taking disjunction of go and the CQs:

g» = 3z coordinates(x,z) A involved(x, y) A IntroC(y)
g, = coordinates(x, y) A IntroC(y)

gs = Prof(x) A coordinates(x, y) A 100S(y)

g, = Jzcoordinates(x, z) A involved(x, y) A 100S(y)
gs = coordinates(x, y) A 100S(y)

29/41



COMPLEXITY OF OMQA IN DL-LITE

- rewriting takes ,yields FO query
- upper bound from FO query evaluation: (ACo C LOGSPACE C P)

- CQ answering is in ACy for data complexity
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COMPLEXITY OF OMQA IN DL-LITE

- rewriting takes ,yields FO query
- upper bound from FO query evaluation: (ACo C LOGSPACE C P)

- CQ answering is in ACy for data complexity

Combined complexity:

- ‘guess’ a disjunct of the rewriting and how to map it into ABox

- CQ answering is NP-complete (same as for DBs)

- 1Q answering is NLOGSPACE-complete (NLOGSPACE C P)

Note: Same bounds hold for several other DL-Lite dialects
30/41



1Q ANSWERING IN EL

Next consider IQ answering in £L.

Assume £L TBoxes given in : axioms of the forms

(A7Ai7 B e NC)
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1Q ANSWERING IN EL

Next consider IQ answering in £L.

Assume £L TBoxes given in : axioms of the forms

(A7Ai7 B e NC)

Cannot use FO query rewriting approach for ££:

no FO-rewriting of A(X) w.r.t. 7 = {3rAC A}

We present a saturation-based approach.
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SATURATION RULES FOR EL

TBox rules

ACB (I<i<n) BM...MBED_~ ACB BLC3rD
ACD AC3r.D

AEdrB BCD 3JrDCE
ACE

ABox rules

AnN...NACB Ai(a) (1<i<n) n JBEA r(a,b) B(b)
B(a) Aa)

A2

Algorithm: apply rules exhaustively, check if A(a) (r(a, b)) is present
32/41



EXAMPLE: SATURATION IN EL

PenneArrabiata C Jhasingred.ArrabiataSauce (1) Peperoncino C Spicy (6)
PenneArrabiata C PastaDish (2)  3hasingred.Spicy C Spicy (7)

PastaDish C Dish (3)  spicy r Dish C SpicyDish (8)

PastaDish C Jhaslngred.Pasta (&)

) ) PenneArrabiata(p). (9)
ArrabiataSauce C 3haslngred.Peperoncino (5)
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EXAMPLE: SATURATION IN EL

PenneArrabiata C JhasIngred.ArrabiataSauce (1) Peperoncino C Spicy (6)
PenneArrabiata C PastaDish (2)  3hasingred.Spicy C Spicy (7)

PastaDish C Dish (3)  spicy r Dish C SpicyDish (8)

PastaDish C 3haslngred.Pasta (&)

) ) PenneArrabiata(p). (9)
ArrabiataSauce C 3haslngred.Peperoncino (5)

ArrabSauce C Spicy T3: (5),(6),(7) (10)
PenneArrab C Spicy T3 : (1),(10), (7) (11
PenneArrab C Dish T1:(2),(3) (12)
PenneArrab C Jhaslngred.Pasta T2:(2),(4) (13)
PenneArrab C SpicyDish T1:(11),(12), (8) (14)
Spicy(p) A1:(11),(9) (15)
Dish(p) A1 (12), (9) (16)
SpicyDish(p) A1:(16),(15) (17)
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COMPLEXITY OF IQ ANSWERING IN EL

Saturation approach is sound: everything derived is entailed
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COMPLEXITY OF 1Q ANSWERING IN EL

Saturation approach is sound: everything derived is entailed

Also complete for instance checking:

Theorem Let K be an ££ knowledge base, and let K’ be the result
of saturating K. For every ABox assertion «, we have:

KEa iff aeK

Note: does not make all consequences explicit

- can have infinitely many implied axioms ~ would not terminate!
- s0: only complete for some reasoning tasks

Runs in polynomial time in |K|. This is optimal:

IQ answering in £L is
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CQ ANSWERING IN EL

Complexity of CQ answering in £L:

. in (scale polynomially in |.A|)
- can be shown e.g. by rewriting into Datalog

- NP-complete in combined complexity
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CQ ANSWERING IN EL

Complexity of CQ answering in £L:
in (scale polynomially in |.A|)
- can be shown e.g. by rewriting into Datalog
- NP-complete in combined complexity

Combined approach:
- saturate ABox using the TBox axioms
- introduce new individuals to witness existentials on LHS (A C 3r.B)
- to ensure finite: reuse individuals as witnesses
- evaluate query on saturated ABox = superset of certain answers
- two strategies to block unsound answers:

- add extra conditions to query
- post-processing to identify and remove false answers
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RESEARCH TRENDS IN OMQA




EFFICIENT OMQA IN DL-LITE

Lots of work on developing and implementing
efficient OMQA algorithms

Focus mostly on DL-Lite (and related dialects):

- First algorithm proposed in mid-2000's
- Rewrites into UCQs, implemented in QUONTO
- Improved versions proposed in REQUIEM, PRESTO, RAPID, ...

- Some algorithms rewrite into positive existential queries or
Datalog programs instead of UCQs

- Resulting queries are smaller, can be easier to evaluate
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OPTIMIZATIONS AND OMQA BEYOND DL-LITE

Tractable classes, fragments of lower complexity

Rewriting engines for other Horn DLs also developed, e.g.,

- REQUIEM and the related KYRIE cover several

- CLIPPER, and recently RAPID cover

They usually rewrite into Datalog programs
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UNDERSTANDING REWRITABILITY

Much attention devoted to understanding the limits of rewritability
and size of rewritings

When are possible?
Can we give bounds on the size of rewritings?

Which non-DL-Lite ontologies can be rewritten into FO-queries?

~ related to non-uniform complexity:

- study specific pairs (g, T), called ontology-mediated queries
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OTHER RESEARCH TOPICS (NON-EXHAUSTIVE)

Beyond classical OMQA

- inconsistency-tolerant query answering
query answering

- privacy-aware query answering

- temporal query answering

Support for building and maintaining OMQA systems
- module extraction
- ontology evolution

- query inseparability and emptiness

Improving the usability of OMQA systems
- interfaces and support for query formulation

query (non-)answers

40/41



QUESTIONS ?

30TH ANNIVERSARY DL WORKSHOP
JuLy 18-21, 2017
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