
A quick tour of computational social choice
Where Artificial Intelligence meets collective decision making

Sylvain Bouveret

LIG – Grenoble INP

Journées inaugurales du Pré-GDR IA
Montpellier, 13 et 14 juin 2016



Outline

A short history of COMSOC

Computational aspects of voting
Of Hard and Easy Rules
Manipulation
Other topics

Fair Division
About preference representation
Distributed allocation
Sequential allocation

Conclusion

2 / 62Introduction to computational social choice



Outline

A short history of COMSOC

Computational aspects of voting
Of Hard and Easy Rules
Manipulation
Other topics

Fair Division
About preference representation
Distributed allocation
Sequential allocation

Conclusion

3 / 62Introduction to computational social choice



Social choice

Social choice theory focuses on the analysis of collective decision
making methods.

I A set of alternatives O
I A set of agents A = {a1, . . . ,an}...
I ...Expressing opinions over the alternatives.
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Social choice

Social choice theory focuses on the analysis of collective decision
making methods.

I A set of alternatives O
I A set of agents A = {a1, . . . ,an}...
I ...Expressing opinions over the alternatives.

⇓
Collective opinion, choice of an alternative...
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Voting

We have to elect a representative from a set of m
candidates on which the n voters have diverse preferences.

I Alternatives: candidates
I Agents: voters
I Preferences: ballots (usually linear orders)
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Voting rules
I X = {a,b, c, . . .} set of candidates
I N = {1, . . . ,n} set of voters
I each voter reports a ranking �i over candidates;
I voting profile: P = 〈�1, . . . ,�n〉

voters 1, 2, 3, 4 : c � b � d � a
voters 5, 6, 7, 8 : a � b � d � c
voter 9 : c � a � b � d
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number of voters

plurality(P) = c
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I N = {1, . . . ,n} set of voters
I each voter reports a ranking �i over candidates;
I voting profile: P = 〈�1, . . . ,�n〉

voters 1, 2, 3, 4 : c � b � d � a
voters 5, 6, 7, 8 : a � b � d � c
voter 9 : c � a � b � d

Borda rule: a candidate ranked 1st / 2nd / 3rd / last in a vote gets 3
/ 2 / 1 / 0 points. The candidate with maximum total number of
points wins.

a 7→ (4× 3) + 2 = 14 b 7→ 17 c 7→ 15 d 7→ 8
Borda(P) = b
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Voting rules
I X = {a,b, c, . . .} set of candidates
I N = {1, . . . ,n} set of voters
I each voter reports a ranking �i over candidates;
I voting profile: P = 〈�1, . . . ,�n〉

voters 1, 2, 3, 4 : c � b � d � a
voters 5, 6, 7, 8 : a � b � d � c
voter 9 : c � a � b � d

many other rules!
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Fair Division – Cake-Cutting

We have to divide a rectangular heterogeneous cake among
n agents having different valuations about parts of the
cake.

0 1

I Alternatives: allocations of the cake
I Agents: cake eaters
I Preferences: valuation functions (generally additive)
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Protocols

Usually, we care about:
I Proportionality: each agent feels that her share is worth at least

1
n of the cake.

I Envy-freeness: each agent feels that her share is better than the
share of any other agent.

2 agents: I cut, you choose.
I Agent 1 cuts the cake into two pieces of equal value to her.
I Agent 2 chooses.

Guarantees envy-freeness and proportionality.
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More than two agents

The Banach-Knaster Last Diminisher procedure:

1. Agent 1 cuts off a piece (she estimates to be worth 1
n )

2. Each agent from 2 to n have the choice either to pass, or to trim
the piece further down.

3. The last agent having cut the piece takes it and leaves the game.

4. The game starts again with the remaining agents and the rest of
the cake (including trimmings).

Guarantees proportionality (of course not envy-freeness).
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Fair Division – Indivisible Goods

We have to allocate a set of indivisible objects to n agents
having different valuations about them.

I Alternatives: allocations of the objects
I Agents: object consumers
I Preferences: valuation functions / orders,...

We will come back to that in more details later.
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Matching

We have to match agents from a group S1 to agents from a
group S2. Agents from S1 have preferences over agents from
S2, and vice-versa.

Examples:
I Matching students to schools (one-to-many matching)
I Matching students to projects (many-to-many matching)
I Matching men to women – stable marriage (one-to-one
matching)
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The Stable Marriage Problem

I n men and n women
I each man has a linear preference order over women, and vice
versa.

I We look for a stable marriage.

The Gale-Shapley algorithm (1962):
I Each man who is not yet engaged proposes to his favourite
women he has not yet proposed to.

I Each woman picks her favourite among all the proposal she has
and the man she is currently engaged with.

I Loop until everyone is engaged.
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Coalition Formation

n agents have to form groups. Each agent has preferences
over the other agents.

I Alternatives: valid partitions of the participants.
I Agents: participants.
I Preferences: usually numerical (additive) preferences on the
other participants.

Generalization of the matching problem. Usually we look for stable
coalitions (hedonic games), or collectively optimal ones.
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Judgment Aggregation

We have to make a judgment over a set of logically
interdependent issues. Each agent n is an independent
judge who has (consistent) opinions about these issues.

I Alternatives: logically interdependent issues
I Agents: judges
I Preferences: usually approval (yes / no) opinions.
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Paradox of Judgment Aggregation
I Instructions from IJCAI-ECAI-2018 PC chair: accept a paper if and
only if it is original and technically valid

I Accept↔ Original ∧ Valid

Original? Valid? Accept?
Reviewer 1 Yes Yes Yes
Reviewer 2 Yes No No
Reviewer 3 No Yes No
majority Yes Yes No

I (Metareview). Your paper was judged to be original and
technically valid. However, we decided to reject it.

I Judgment aggregation: aggregate opinions about logically
interrelated issues... in a logically consistent way.

I Strong links to nonmonotonic reasoning, belief merging,
inconsistency handling.

15 / 62Introduction to computational social choice



Paradox of Judgment Aggregation
I Instructions from IJCAI-ECAI-2018 PC chair: accept a paper if and
only if it is original and technically valid

I Accept↔ Original ∧ Valid

Original? Valid? Accept?
Reviewer 1 Yes Yes Yes
Reviewer 2 Yes No No
Reviewer 3 No Yes No
majority Yes Yes No

I (Metareview). Your paper was judged to be original and
technically valid. However, we decided to reject it.

I Judgment aggregation: aggregate opinions about logically
interrelated issues...

in a logically consistent way.
I Strong links to nonmonotonic reasoning, belief merging,
inconsistency handling.

15 / 62Introduction to computational social choice



Paradox of Judgment Aggregation
I Instructions from IJCAI-ECAI-2018 PC chair: accept a paper if and
only if it is original and technically valid

I Accept↔ Original ∧ Valid

Original? Valid? Accept?
Reviewer 1 Yes Yes Yes
Reviewer 2 Yes No No
Reviewer 3 No Yes No
majority Yes Yes No

I (Metareview). Your paper was judged to be original and
technically valid. However, we decided to reject it.

I Judgment aggregation: aggregate opinions about logically
interrelated issues... in a logically consistent way.

I Strong links to nonmonotonic reasoning, belief merging,
inconsistency handling.

15 / 62Introduction to computational social choice



Social Choice Everywhere

I Assigning courses to students
I Electing a political representative (e.g. the head of the
Pré-GDR...)

I Choosing a collective meeting date
I Choosing the future name for a region
I Electing the winner of the Eurovision song contest
I Scheduling the workload of a team of workers
I Matching patients with hospitals
I Diving a piece of land
I Forming teams
I Choosing the place for a common facility
I ...
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Early ages

I From Ancient Greece and India: Aristotle, Chânakya...
I ...To the late XVIIIth century:

I Condorcet
I Borda

I And the British philosophical roots of utilitarianism: Bentham,
Stuart Mill...
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Birth of Modern Social Choice

I Arrow’s theorem (1951):

With at least 3 alternatives, an aggregation function satisfies
unanimity and independence of irrelevant alternatives if and only if

it is a dictatorship.

I Results are mainly axiomatic (economics/mathematics)
I Impossibility theorems: incompatibility of a small set of
seemingly innocuous conditions, like Arrow’s theorem.

I Computational issues are neglected so far.
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Where Computation Comes into Play

I Around the 50’s: protocols for fair division (e.g. Banach-Knaster)
 algorithms?

I Early 80’s: combinatorial auctions
I Early 90’s: computer scientists start studying computational
issues in social choice (complexity of voting...)

I 2006: First COMSOC Workshop
I As of 2016: a very active community, well represented in AAMAS,
IJCAI, AAAI, ECAI...
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Computational social choice

COMSOC ≈ Social Choice ∩ Computer Science

1. Use techniques from economics to solve problems in IT
(network sharing, job allocation...)

2. Use techniques from CS to analyze and solve economical
problems (complexity of voting procedures, compact preference
representation...)
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An Interdisciplinary Domain

COMSOC
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The Condorcet Principle
3 voters:

a � b � d � c � e
b � a � e � d � c
c � e � a � b � d

Run a tournament between the candidates (pairwise comparisons)

a

b
c

d
e
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Dodgson rule

However, preferences may cycle and the Condorcet Winner may not
exist.
Condorcet-consistent rules elect the Condorcet Winner when it
exists.

The Dodgson rule:
If a Condorcet Winner exists, elect it. Otherwise compute for
each candidate c the number of adjacent swaps in the
individual preferences required to make c a Condorcet
Winner. Elect the candidate that minimizes that number.

Theorem (Hemaspaandra et al., 1997)
Winner determination for Dodgson rule in complete for parallel
access to NP.
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Manipulating Borda
I Borda rule
I a single voter hasn’t voted yet

I 4 voters so far:
a � b � d � c � e
b � a � e � d � c
c � e � a � b � d
d � c � b � a � e

I Current Borda scores

a 7→ 10 b 7→ 10 c 7→ 8 d 7→ 7 e 7→ 5

Can the last voter find a vote so that the winner is ... a?
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a � b � d � c � e
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d � c � b � a � e

I Current Borda scores

a 7→ 10 b 7→ 10 c 7→ 8 d 7→ 7 e 7→ 5

Can the last voter find a vote so that the winner is ... c?
I c � e � d � b � a
I scores: c 7→ 12, a 7→ 10, b 7→ 11, d 7→ 9, e 7→ 8
I yes
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Manipulating Borda: two voters

I Two voters haven’t voted yet

I Borda rule
I Tie-breaking priority a > b > c > d > e > f .
I Current Borda scores:

a 7→ 12 b 7→ 10 c 7→ 9 d 7→ 9 e 7→ 4 f 7→ 1

I Do the last two voters have a constructive manipulation for e?
I A simple greedy algorithm like before does not work.
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Manipulation of the Borda rule

Existence of a manipulation for the Borda rule:
I for a single voter : in P

I Bartholdi, Tovey & Trick, Social Choice and Welfare, 89
I for a coalition of at least two voters : NP-complete

I Betzler, Niedermeyer & Woeginger, IJCAI-11
I Davies, Katsirelos, Narodytska & Walsh, AAAI-11

I Lots of results of this kind
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Complexity and Manipulation

Is there a better rule than Borda that prevents manipulation?

Theorem (Gibbard-Satterthwaite, 1973/75)
All resolute and surjective voting rules over more than 3 candidates
are either dictatorial or manipulable

But computational complexity can be seen as a barrier to
manipulation.
Observation: worst-case complexity, under complete knowledge (→
in practice?)
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Voting in Combinatorial Domains

Combinatorial domains in voting: multiple referendums,
multi-winner (e.g. committee) election...

Example
2 binary variables:

I S (build a new swimming pool)
I T (build a new tennis court)
voters 1 and 2 ST̄ � S̄T � S̄T̄ � ST
voters 3 and 4 S̄T � ST̄ � S̄T̄ � ST
voter 5 ST � ST̄ � S̄T � S̄T̄
A naive solution: don’t bother and vote separately on each variable.
⇒ multiple election paradoxes
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multi-winner (e.g. committee) election...

Example
2 binary variables:

I S (build a new swimming pool)
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Multiple Election Paradoxes

voters 1 and 2 ST̄ � S̄T � S̄T̄ � ST
voters 3 and 4 S̄T � ST̄ � S̄T̄ � ST
voter 5 ST � ST̄ � S̄T � S̄T̄

Problem 1: voters 1-4 feel ill at ease reporting a preference on {S, S̄}
and {T, T̄}
Problem 2: suppose they do so by an “optimistic” projection

I voters 1, 2 and 5: S; voters 3 and 4: S̄⇒ decision = S;
I voters 3,4 and 5: T; voters 1 and 2: T̄ ⇒ decision = T.

Alternative ST is chosen although it is the worst alternative for all
but one voter.
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Voting and CP-nets: aggregating CP-nets

First solution: use a compact preference representation language
and aggregate the formulas

Example (Swimming pool and tennis)
2 voters

st̄ � s̄t � s̄t̄ � st

S T

t : s̄ � s
t̄ : s � s̄

s : t̄ � t
s̄ : t � t̄

2 voters
s̄t � st̄ � s̄t̄ � st

S T

t : s̄ � s
t̄ : s � s̄

s : t̄ � t
s̄ : t � t̄

1 voter
st � s̄t � st̄ � s̄t̄

S T

s � s̄ t � t̄

Aggregate locally (by majority) for each pair of adjacent outcomes:
S T

t : s̄ � s
t̄ : s � s̄

s : t̄ � t
s̄ : t � t̄

st st̄

s̄t̄s̄t
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Voting and CP-nets: aggregating CP-nets

+ always applicable, because any preference relation is
compatible with some CP-net (possibly with cyclic
dependencies).

− elicitation cost: in the worst case, exponential number of
queries to each voter

− computation cost: dominance in CP-nets with cyclic
dependencies is PSPACE-complete

− there might be no winner; there might be several winners

[Xia et al., 2008, Conitzer et al., 2011, Li et al., 2011]
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Voting and CP-nets: sequential voting

Assumption: there exists an order on variables, say x1 > . . . > xp,
such that for every voter and for every i, xi is preferentially
independent of xi+1, . . . , xp given x1, . . . , xi−1.

Sequential voting: apply local voting rules, one variable after the
other, in an order compatible with G.

At every step:
I we elicit the voters’ preferences about a single variable;
I a local rule is used to compute the value chosen for this
variable;

I this value is communicated to the voters.

We don’t need to know the whole preference relations of the voters
but only a part of their CP-nets.

[Lang and Xia, 2009]
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Voting and CP-nets: sequential voting

X Y Z

1. elicit voters’ preferences on X (possible because their
preferences on X are unconditional);

2. apply local voting rule rX and determine the “local” winner x∗;
3. elicit voters’ preferences on Y given X = x∗ (possible because
their preferences on Y depend only on X);

4. apply local voting rule rY and determine y∗;
5. elicit voters’ preferences on Z given X = x∗ and Y = y∗.
6. apply local voting rule rZ and determine z∗.
7. winner: (x∗, y∗, z∗)
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Incomplete Preferences

I New votes are coming (online vote, Doodle poll...)
I New candidates are coming (Doodle poll, recruiting committee...)
I Incomplete lists
I Truncated ballots

Winning candidate becomes a modal notion:
I x is a necessary winner if she wins under all possible
completions of the profile.

I x is a possible winner if she wins under at least one completion
of the profile.

Konczak & L (05); Walsh (07); Xia & Conitzer (08) . . .
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Incomplete Profiles and Manipulation...

I Borda rule
I a single voter hasn’t voted yet

I 4 voters so far:
a � b � d � c � e
b � a � e � d � c
c � e � a � b � d
d � c � b � a � e

I Current Borda scores

a 7→ 10 b 7→ 10 c 7→ 8 d 7→ 7 e 7→ 5

Can the last voter find a vote so that the winner is a?

→ Is a a possible winner?
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Automated Proofs

Recent advances in automated solving have been applied to social
choice theorems.
Idea: Cast classical problems in a suitable logic and use automated
theorem provers (e.g. SAT solvers, SMT solvers...)
No “new” theorems so far but:

I Automated verification of known proofs (e.g. the
Gibbard-Sattherthwaith theorem [Nipkow, 2009])

I Simpler proofs or shorter counterexamples found (e.g the
no-show paradox [Brandt et al., 2016]).
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Outline

A short history of COMSOC

Computational aspects of voting
Of Hard and Easy Rules
Manipulation
Other topics

Fair Division
About preference representation
Distributed allocation
Sequential allocation

Conclusion
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Fair Division of Indivisible Goods...

You have:
I a finite set of objects O = {1, . . . ,m}
I a finite set of agents A = {1, . . . ,n} having some preferences on
the set of objects they may receive

How would you allocate the objects to the agents so as to be as fair
as possible?

More precisely, you want:
I an allocation −→π : A → 2O

I such that πi ∩ πj = ∅ if i 6= j (preemption),
I

⋃
i∈A πi = O (no free-disposal),

I and which takes into account the agents’ preferences
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Preferences for Fair Division

An intuitive way of expressing preferences...

I We assume that the preferences are ordinal.
I Each agent specifies a linear order . on O (single objects)

A : a . b . c . d

Problem: How to compare subsets of objects ?
 e.g abc

?
≺� ab; ab

?
≺� ac ?

→ We need to be able to express preferences over 2O .
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Combinatorial Spaces. . .

The combinatorial trap. . .
Two variables. . .
o1 � o2 � o1o2 � ∅ → 3 comparaisons (linear order).
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Combinatorial Spaces. . .

The combinatorial trap. . .
Four variables. . .
o1o2 � o2o3o4 � o1 � ∅ � o2 � o1o2o3o4 � o1o3 � o2o4 � o3o4 �
o1o4 � o1o3o4 � o2o3 � o4 � o3 � o1o2o4 � o1o2o3 → 15
comparisons (linear order).

42 / 62Introduction to computational social choice



Combinatorial Spaces. . .

The combinatorial trap. . .
Twenty variables. . .
o8o5 � o5o3o9 � o8 � ∅ � o5 � o8o5o3o9 � o8o3 � o5o9 � o3o9 �
o8o9 � o8o3o9 � o5o3 � o9 � o3 � o8o5o9 � o8o5o3o1o2o5o8o9 �
o1o5o6 � o7 � o2o3o4o5o6o7o8 � o1o2o3o4o5 � o1o3 � o2 �
o1o3o7o9 � o1o5 � o1o7o8o9 � o2 � o4 � o6 � o1o7 � o1o2o3 �
o1o2 � o2o5o4 � o1 � o2 � o1o2o5o4 � o1o5 � o2o4 � o5o4 �
o1o4 � o1o5o4 � o2o5 � o4 � o5 � o1o2o4 � o1o2o5 � o1o5 �
o5o3o9 � o1 � ∅ � o5 � o1o5o3o9 � o1o3 � o5o9 � o3o9 �
o1o9 � o1o3o9 � o5o3 � o9 � o3 � o1o5o9 � o1o5o3o9o6o5o1o9 �
o9o5o6 � o7 � o6o3o4o5o6o7o1 � o9o6o3o4o5 � o9o3 � o6 �
o9o3o7o9 � o9o5 � o9o7o1o9 � o6 � o4 � o6 � o9o7 � o9o6o3 �
o9o6 � o6o5o4 � o9 � o6 � o9o6o5o4 � o9o5 � o6o4 � o5o4 �
o9o4 �

→ 1048575 comparisons→ elicitation needs more than 12 days!
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The dilemma

I Expressing preferential dependencies is necessary in many
cases.

I however. . . explicit representation and elicitation of � or u are
unfeasible in practice.

⇒ Compact preference representation languages

I Cardinal utilities: Weighted propositional logic, bidding
languages, GAI-nets, k-additive functions...

I Ordinal utilities: Prioritized goal bases, CI-nets...
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CI-nets: the language

A language inspired from CP-nets...

Conditional importance statement
Conditional importance statement: S+,S− : S1 . S2 (with S+, S−, S1
and S2 pairwise-disjoint).

Example: ad : b . ce implies for example ab � ace, abfg � acefg, . . .

CI-net
A CI-net on V is a set N of conditional importance statements on V .
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Semantics
A CI-net of 4 objects {a,b, c,d}: {a : d . bc,ad : b . c,d : c . b}

∅

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd

Induced preference relation�N : the smallest monotonic preference relation compatible with
all CI-statements.
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CI-nets: Features

I Expressivity:
I CI-nets can express all strict monotonic preference relations on
2V .

I Full expressivity is lost as soon as we only allow positive (resp.
negative) preconditions or the cardinality of compared sets is
bounded.

I Complexity:
I [Satisfiability] (consistency) is PSPACE-complete.
I [Dominance] is PSPACE-complete.

Conclusion: a very expressive and compact language, at the price of
a high computational complexity.
Is it really useful in practice?
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Responsive ordinal preferences

A restricted setting...

I We assume that the preferences are ordinal.
I Restriction: each agent specifies a linear order . on O (single
objects)

A : a . b . c . d

Problem: How to compare subsets of objects ?
 e.g abc

?
≺� ab; ab

?
≺� ac ?

1. Assume monotonicity e.g abc � ab.
2. Assume responsiveness: if (X ∪ Y) ∩ Z = ∅ then X � Y iff
X ∪ Z � Y ∪ Z.

 e.g ab � ac.

Actually this is a restricted version of CI-nets.
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Example

I A : a . b . c . d
I Responsiveness
I Monotonicity

abcd abc abd

acd bcd

ab ac ad

bc bd cd

a b

c d ∅
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Dominance

Proposition
X �A Y ⇔ ∃ an injective mapping of improvements Y 7→ X.

Example: A = a . b . c . d . e . f

I { a , c , d } �A { b , c , e }
I { a , d , e } and { b , c , f } are incomparable.
I {a, c,d} and {b, c, e, f} are incomparable.
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Proposition
X �A Y ⇔ ∃ an injective mapping of improvements Y 7→ X.
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I { a , c , d } �A { b , c , e }
I { a , d , e } and { b , c , f } are incomparable.
I {a, c,d} and {b, c, e, f} are incomparable.

[Brams et al., 2004, Brams and King, 2005]
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Envy-freeness

Fairness. . .

Envy-freeness: 〈�1, . . . ,�n〉 total strict orders, allocation π.

π envy-free ⇔ ∀i, j, π(i) �i π(j)

When 〈�1, . . . ,�n〉 are partial orders?

 Envy-freeness becomes a modal notion

Possible and necessary Envy-freeness
I π is Possibly Envy-Free iff for all i, j, we have π(j) 6�i π(i);
I π is Necessary Envy-Free iff for all i, j, we have π(i) �i π(j).
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Pareto-efficiency
Efficiency. . .
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I Complete allocation.
I Pareto-efficiency
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Pareto-efficiency
Efficiency. . .

Classical Pareto dominance
π′ dominates π if for all i, π′(i) �i π(i) and for some j, π′(j) �j π(j)
Extended to possible and necessary Pareto dominance.

I π is possibly Pareto-efficient (PPE) if there exists no allocation
π′ such that π′ necessarily dominates π.

I π′ is necessarily Pareto-efficient (NPE) if there exists no
allocation π′ such that π′ possibly dominates π.
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Envy-freeness and efficiency
complete PPE NPE Efficiency
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Envy-freeness and efficiency
complete PPE NPE Efficiency

PEF X X X
NEF X X X

Fairness

Envy-freeness and efficiency cannot always be satisfied
simultaneously

Questions:

I under which conditions is it guaranteed that there exists a
allocation that satisfies Fairness and Efficiency ?

I how hard it is to determine whether such an allocation exists?
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Results

complete PPE NPE

PEF P
(algorithm)

P
(algorithm)

?

NEF NP-complete NP-complete
(P for 2 agents)

NP-hard
(Σp2 -completeness
conjectured)

I Results refined and extended by [Aziz et al., 2015], to the case of
preferences with indifferences

I Notion of stochastic dominance
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Distributed allocation

When many agents are involved, a centralized allocation may not be
the most adapted solution (elicitation, computation time...).
Idea of distributed allocation:

I Start from an initial allocation
I Let the agents negotiate by swapping (bundles of) resources.
Different kinds of deals:

I with / without money
I bounded in the number of resources involved
I rational
I ...
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Convergence properties

I Good news: for any separable collective criterion (utilitarian SW,
leximin-egalitarian SW...), any sequence of locally improving
deals eventually results in a socially optimal allocation

I Bad news:
I Any kind of restriction on the types of deals ruins this
convergence property

I The sequence of deals can be exponentially long

[Sandholm, 1998, Endriss et al., 2006, Chevaleyre et al., 2010]
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Sequential allocation

Between fully centralized allocation and fully distributed allocation,
a very simple procedure...

Ask the agents to pick in turn their most preferred object among the
remaining ones, according to some predefined sequence.

Example
3 agents A, B, C, 6 objects, sequence ABCCBA→ A chooses first (and
takes her preferred object), then B, then C, then C again. . .
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Problems in Sequential Allocation

I Best sequence: We “feel” that ABCCBA is fairer than AABBCC. . .
→ What is the fairest sequence ?

Under some independence assumptions, classical utilitarianism,
alternating sequences are optimal for two agents
[Kalinowski et al., 2013a].
Egalitarianism:

p n = 2 n = 3
4
5
6
8
10
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Problems in Sequential Allocation

I Best sequence: We “feel” that ABCCBA is fairer than AABBCC. . .
→ What is the fairest sequence ?

Under some independence assumptions, classical utilitarianism,
alternating sequences are optimal for two agents
[Kalinowski et al., 2013a].
Egalitarianism:

p n = 2 n = 3
4 ABBA ABCC
5 AABBB ABCCB
6 ABABBA ABCCBA
8 ABBABAAB AACCBBCB
10 ABBAABABBA ABCABBCACC
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Strategical Issues

I Manipulation: I know all the other agents’ preferences. At my
turn, can I choose not to pick my preferred item to get a better
share?

I First result: if I want S, I can find a manipulation to get it if it is
possible.

I Idea: greedy algorithm (pick the items in the same order of the
others preferences)

I Observation: reminds the algorithm for Borda manipulation?

I Optimal manipulation: P for two agents
[Bouveret and Lang, 2014], NP-complete for more
[Aziz et al., 2016].

I Game-theoretic issues: Subgame-Perfect Nash Equilibrium,
Simple Nash Equilibrium...

[Kalinowski et al., 2013b, Kohler and Chandrasekaran, 1971]
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Of Hard and Easy Rules
Manipulation
Other topics

Fair Division
About preference representation
Distributed allocation
Sequential allocation
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Take-away message

I COMSOC: Social Choice meets Computer Science
I A lot of space for problems related to IA and CS in general:
algorithmics, complexity, preference / uncertainty
representation and reasoning, learning...

I A young (≈ 15-20 years) but active field.
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Future Trends?

Computational Social choice becomes more and more practical...

http://www.spliddit.org/ http://whale3.noiraudes.net/

Not only theroretically good solutions, but efficient solution that
work in practice (running time, preference elicitation...)
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Further readings

I Ulle Endriss’s web page. A lot of resources:
I http://www.illc.uva.nl/COMSOC/
I https://staff.fnwi.uva.nl/u.endriss/teaching/comsoc/

I Some tutorials by Jérôme Lang (on which this presentation is
based)

I Handbook of Computational Social Choice (2016). Brandt, Felix,
Conitzer, Vincent, Endriss, Ulle, Lang, Jérôme et Procaccia, Ariel
D., éditeurs. Cambridge University Press.

I Economics and Computation. An Introduction to Algorithmic
Game Theory, Computational Social Choice and Fair Division
(2016). Rothe, Jörg, éditeur. Springer.

I Panorama de l’IA (2014), volume 1, chapitre 15 (Systèmes
Multiagents : Décision Collective). Marquis, Pierre, Papini, Odile
et Prade, Henri, éditeurs. Cepaduès.
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