

A Circuit-Based Approach to Efficient Enumeration

Antoine Amarilli¹, Pierre Bourhis², Louis Jachiet³, Stefan Mengel⁴

May 10th, 2017

¹Télécom ParisTech

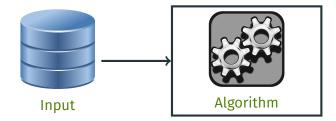
²CNRS CRIStAL

³Université Grenoble-Alpes

⁴CNRS CRIL

Problem statement

Input



• Problem: The output may be too large to compute efficiently

• Problem: The output may be too large to compute efficiently

• Problem: The output may be too large to compute efficiently

Results 1 - 20 of 10,514

• Problem: The output may be too large to compute efficiently

Results 1 - 20 of 10,514

. . .

• Problem: The output may be too large to compute efficiently

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

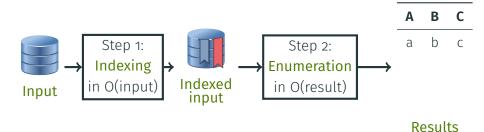
• Problem: The output may be too large to compute efficiently

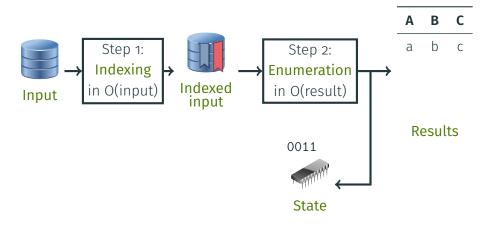
Results 1 - 20 of 10,514

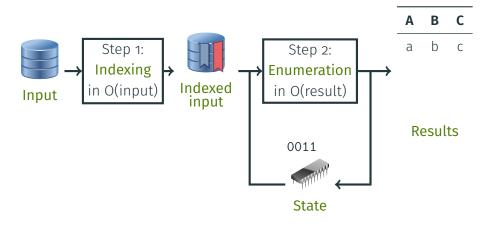
View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

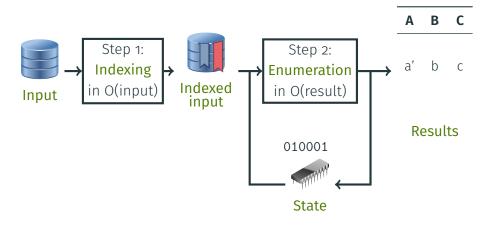
→ Solution: Enumerate solutions one after the other

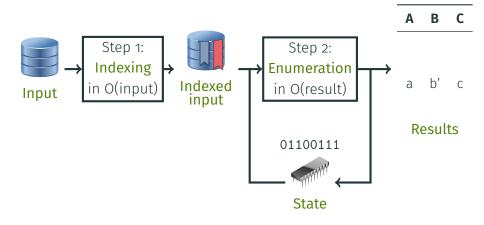
Input

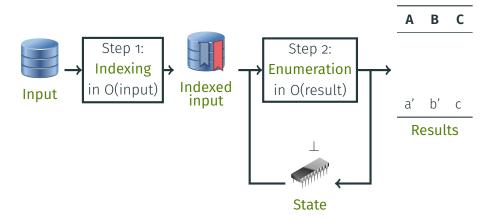










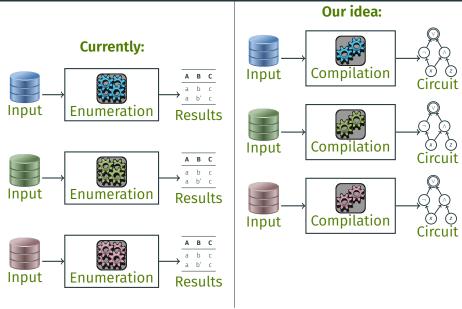


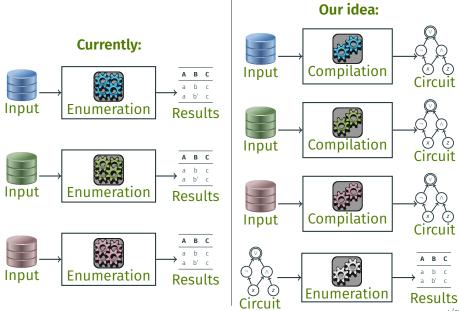
Currently:

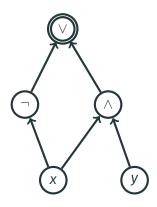
Currently:

Currently:

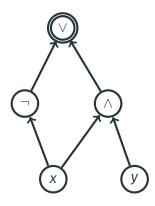




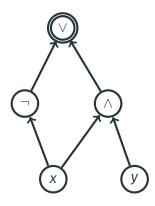




• Directed acyclic graph of gates

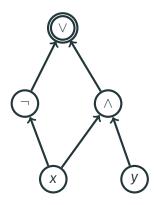


- Directed acyclic graph of gates
- Output gate:



- Directed acyclic graph of gates
- Output gate:

• Variable gates:



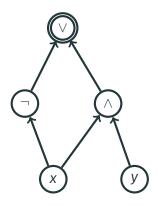
• Directed acyclic graph of gates

Х

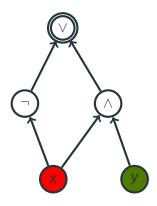
 \bigtriangledown \land

(¬)

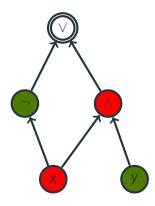
- Output gate:
- Variable gates:
- Internal gates:



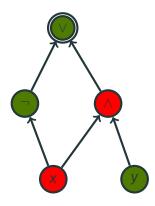
- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates: √
 ∧
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$...



- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates: √
 ∧
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$...

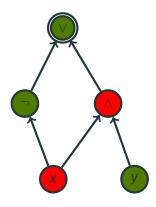


- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates: √
 ∧
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$...



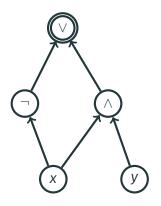
- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates: (V) (A) (¬)
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1

Boolean circuits



- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates: (V) (A) (¬)
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1
- Assignment: set of variables mapped to 1 Example: S_ν = {y}; more concise than ν

Boolean circuits



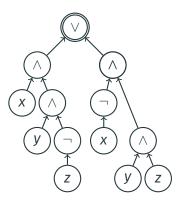
- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates: 🚫 🔿 🕤
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1
- Assignment: set of variables mapped to 1
 Example: S_ν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

d-DNNF:

• (V) are all **deterministic**:

The inputs are **mutually exclusive** (= no valuation ν makes two inputs simultaneously evaluate to 1)



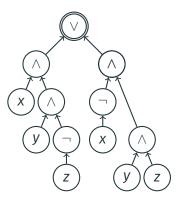
d-DNNF:

• (V) are all **deterministic**:

The inputs are **mutually exclusive** (= no valuation ν makes two inputs simultaneously evaluate to 1)

• () are all **decomposable**:

The inputs are **independent** (= no variable *x* has a path to two different inputs)



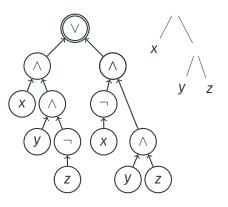
d-DNNF:

• (V) are all **deterministic**:

The inputs are **mutually exclusive** (= no valuation ν makes two inputs simultaneously evaluate to 1)

• () are all **decomposable**:

The inputs are **independent** (= no variable *x* has a path to two different inputs) v-tree: ∧-gates follow a tree on the variables



Theorem

Given a **d-DNNF circuit C** with a **v-tree T**, we can enumerate its **satisfying assignments** with preprocessing **linear in** |C| + |T| and delay **linear in each assignment**

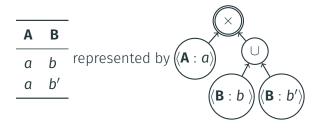
Theorem

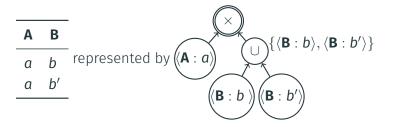
Given a *d-DNNF circuit C* with a *v-tree T*, we can enumerate its satisfying assignments with preprocessing linear in |C| + |T| and delay linear in each assignment

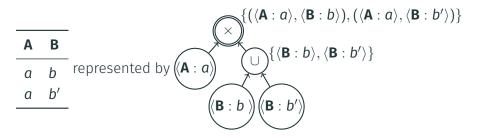
Also: restrict to assignments of **constant size** $k \in \mathbb{N}$ (at most k variables are set to 1):

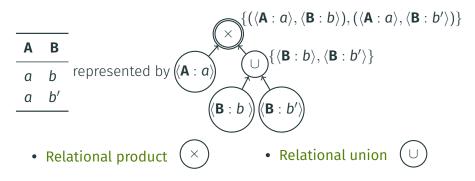
Theorem

Given a *d*-DNNF circuit C with a v-tree T, we can enumerate its satisfying assignments of size $\leq k$ with preprocessing linear in |C| + |T| and constant delay

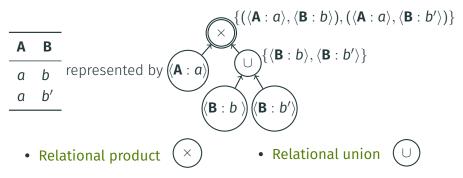






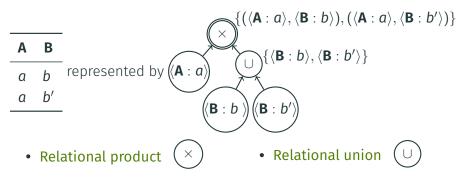


• Factorized databases: implicit representation of database tables



• Deterministic: We do not obtain the same tuple multiple times

• Factorized databases: implicit representation of database tables



• Deterministic: We do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015]) Given a deterministic factorized representation, we can enumerate its tuples with **linear preprocessing** and **constant delay**

• Compute the results (a, b, c) of a query Q(x, y, z) on a database D

- Compute the results (a, b, c) of a query Q(x, y, z) on a database D
- Assumption: the database has bounded treewidth
 - \rightarrow Captures **trees**, words, etc.

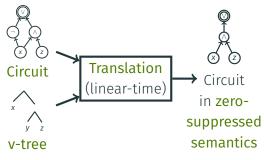
- Compute the results (a, b, c) of a query Q(x, y, z) on a database D
- Assumption: the database has bounded treewidth
 - \rightarrow Captures **trees**, words, etc.
- Query given as a deterministic tree automaton
 - → Captures **monadic second-order** (data-independent translation)
 - \rightarrow Captures conjunctive queries, SQL, etc.

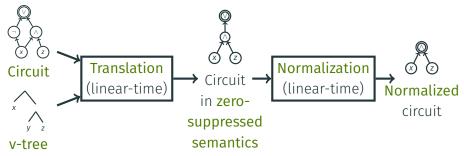
- Compute the results (a, b, c) of a query Q(x, y, z) on a database D
- Assumption: the database has bounded treewidth
 - \rightarrow Captures **trees**, words, etc.
- Query given as a deterministic tree automaton
 - → Captures monadic second-order (data-independent translation)
 - \rightarrow Captures conjunctive queries, SQL, etc.
- ightarrow We can construct a d-DNNF that describes the query results

- Compute the results (a, b, c) of a query Q(x, y, z) on a database D
- Assumption: the database has bounded treewidth
 - \rightarrow Captures **trees**, words, etc.
- Query given as a deterministic tree automaton
 - → Captures monadic second-order (data-independent translation)
 - \rightarrow Captures conjunctive queries, SQL, etc.
- $\rightarrow\,$ We can construct a $d\text{-}\mathsf{DNNF}$ that describes the query results

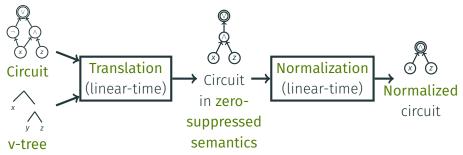
Theorem (Recaptures [Bagan, 2006], [Kazana and Segoufin, 2013]) Given a MSO query Q and a database D, the results of Q on D can be enumerated with **linear preprocessing** in D and **linear delay** in each answer (\rightarrow constant delay for free first-order variables)

Proof techniques





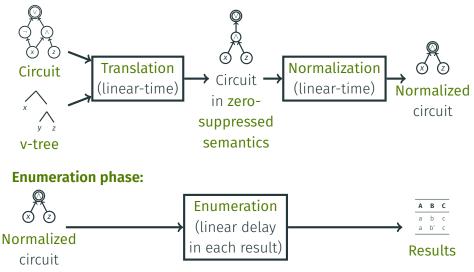
Preprocessing phase:

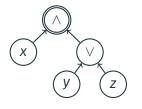


Enumeration phase:

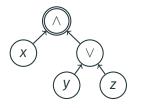
Normalized

circuit



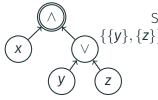


Special zero-suppressed semantics for circuits:



Special **zero-suppressed semantics** for circuits:

- No NOT-gate
- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup



Special zero-suppressed semantics for circuits: $\{\{y\}, \{z\}\}$ • No NOT-gate

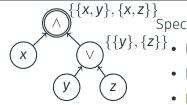
- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup

Ζ

х

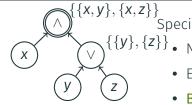
 $\{x, y\}, \{x, z\}\}$ Special zero-suppressed semantics for circuits: $\{y\}, \{z\}\}$ No NOT-gate

- Each gate captures a set of assignments
- **Bottom-up** definition with \times and \cup



{{x, z}} Special zero-suppressed semantics for circuits: {{y}, {z}} No NOT-gate

- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup
- **d-DNNF**: \cup are disjoint, \times are on disjoint sets

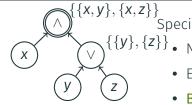


{{x, z}} Special zero-suppressed semantics for circuits: {{y}, {z}} No NOT-gate

- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup
- **d-DNNF**: \cup are disjoint, \times are on disjoint sets

Many **equivalent ways** to understand this:

- Generalization of **factorized representations**
- Analogue of **zero-suppressed** OBDDs (implicit negation)
- Arithmetic circuits: × and + on polynomials



Special zero-suppressed semantics for circuits: z}}. No NOT-gate

- Each gate **captures** a set of assignments
- Bottom-up definition with \times and \cup
- **d-DNNF**: \cup are disjoint, \times are on disjoint sets

Many **equivalent ways** to understand this:

- Generalization of factorized representations
- Analogue of zero-suppressed OBDDs (implicit negation)
- Arithmetic circuits: × and + on polynomials

Simplification: rewrite circuits to arity-two (fan-in \leq 2)

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (x) :

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (x) : enumerate $\{x\}$ and stop

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (x) : enumerate $\{x\}$ and stop

Concatenation: enumerate S(g)and then enumerate S(g')

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (x) : enumerate $\{x\}$ and stop

- Concatenation: enumerate S(g)and then enumerate S(g')
- Determinism: no duplicates

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (x) : enumerate $\{x\}$ and stop

Concatenation: enumerate S(g)and then enumerate S(g')

Determinism: no duplicates

Lexicographic product: enumerate S(g)and for each result t enumerate S(g')and concatenate t with each result

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

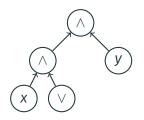
Base case: variable (x) : enumerate $\{x\}$ and stop

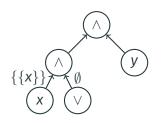
Concatenation: enumerate S(g)and then enumerate S(g')

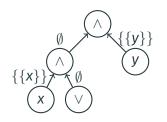
Determinism: no duplicates

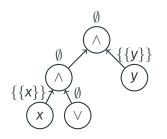
Lexicographic product: enumerate S(g)and for each result t enumerate S(g')and concatenate t with each result

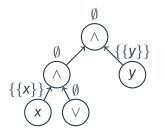
Decomposability: no duplicates



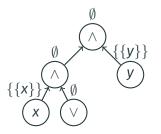




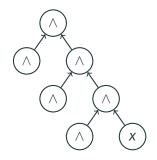


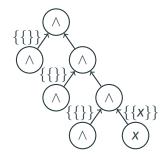


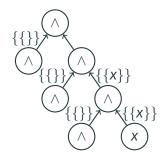
• **Problem:** if
$$S(g) = \emptyset$$
 we waste time

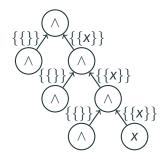


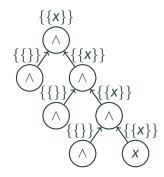
- **Problem:** if $S(g) = \emptyset$ we waste time
- Solution: compute bottom-up if $S(g) = \emptyset$

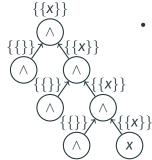




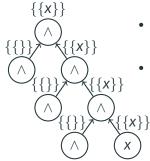




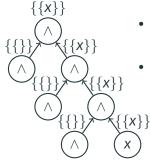




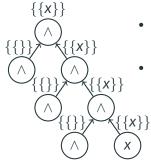
• **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates



- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:



- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)



- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}$ for AND-gates

 $\{\{x\}\}$

- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
 - Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}$ for AND-gates

 $\{\{x\}\}$

- Problem: if S(g) contains {} we waste time in chains of AND-gates
 - Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}$ for AND-gates
 - collapse AND-chains with fan-in 1

 $\{\{x\}\}$

 $\{\{x\}\}$

 $\{\{x\}\}$

 $\{X\}$

- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}$ for AND-gates
 - collapse AND-chains with fan-in 1

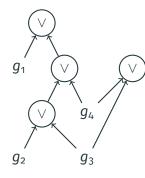
 $\{\{x\}\}$

{{x}}

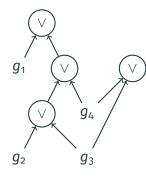
{{x}}

 $\{X\}$

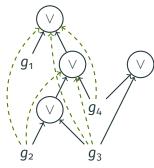
- Problem: if S(g) contains {} we waste time in chains of AND-gates
 - Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}$ for AND-gates
 - collapse AND-chains with fan-in 1
- → Now, traversing an AND-gate ensures that we make progress: it splits the assignments non-trivially



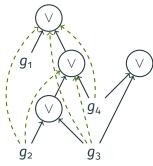
• **Problem:** we waste time in OR-hierarchies to find a **reachable exit** (non-OR gate)



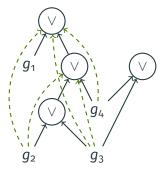
- **Problem:** we waste time in OR-hierarchies to find a **reachable exit** (non-OR gate)
- Solution: compute reachability index



- **Problem:** we waste time in OR-hierarchies to find a **reachable exit** (non-OR gate)
- Solution: compute reachability index



- **Problem:** we waste time in OR-hierarchies to find a **reachable exit** (non-OR gate)
- Solution: compute reachability index
- Problem: must be done in linear time

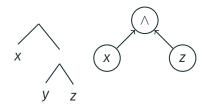


- **Problem:** we waste time in OR-hierarchies to find a **reachable exit** (non-OR gate)
- Solution: compute reachability index
- Problem: must be done in linear time

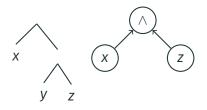
Solution:

- Determinism ensures we have a multitree (we cannot have the pattern at the right)
- Custom constant-delay reachability index for multitrees

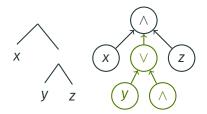
• This is where we use the **v-tree**



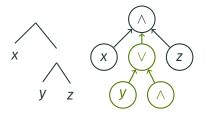
- This is where we use the **v-tree**
- Add explicitly untested variables

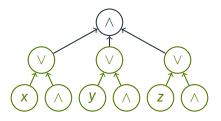


- This is where we use the **v-tree**
- Add explicitly untested variables



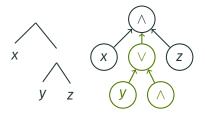
- This is where we use the **v-tree**
- Add explicitly untested variables

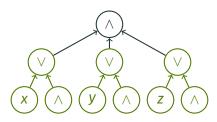




• Problem: quadratic blowup

- This is where we use the **v-tree**
- Add explicitly untested variables





- Problem: quadratic blowup
- Solution:
 - Order < on variables in the v-tree (x < y < z)
 - Interval [x, z]
 - Range gates to denote $\bigvee [x, z]$ in constant space

Conclusion

Summary and conclusion

Summary:

• Usual approach: develop enumeration algorithms by hand

Summary and conclusion

- Usual approach: develop enumeration algorithms by hand
- Proposed approach:

- Usual approach: develop enumeration algorithms by hand
- Proposed approach:
 - Develop linear-time compilation algorithm to circuits

- Usual approach: develop enumeration algorithms by hand
- Proposed approach:
 - Develop linear-time compilation algorithm to circuits
 - Use restricted circuit classes (structured d-DNNF)

- Usual approach: develop enumeration algorithms by hand
- Proposed approach:
 - Develop linear-time compilation algorithm to circuits
 - Use restricted circuit classes (structured d-DNNF)
 - **Develop** general enumeration results on circuits

- Usual approach: develop enumeration algorithms by hand
- Proposed approach:
 - Develop linear-time compilation algorithm to circuits
 - Use restricted circuit classes (structured d-DNNF)
 - **Develop** general enumeration results on circuits

Future work:

- Theory: handle updates on the input
- Practice: implement the technique with automata

- Usual approach: develop enumeration algorithms by hand
- Proposed approach:
 - Develop linear-time compilation algorithm to circuits
 - Use restricted circuit classes (structured d-DNNF)
 - **Develop** general enumeration results on circuits

Future work:

- Theory: handle updates on the input
- Practice: implement the technique with automata

Thanks for your attention!

] Bagan, G. (2006).

MSO queries on tree decomposable structures are computable with linear delay.

In CSL.

- Kazana, W. and Segoufin, L. (2013).
 Enumeration of monadic second-order queries on trees.
 TOCL, 14(4).
- Olteanu, D. and Závodnỳ, J. (2015).
 Size bounds for factorised representations of query results. TODS, 40(1).