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The SAT disruption

• SAT is NP-complete [Cook’71]

– But, CDCL SAT solving is a success story of Computer Science
– Hundreds (thousands?) of practical applications
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SAT solver improvement I
[Source: Le Berre 2013]
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SAT solver improvement II
[Source: Simon 2015]
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SAT is the engines’ engine

Engines using
SAT engines

Boolean

QBF

MaxSAT

PBO

#SAT

...

FOL SMT

Model
finding

Theorem
proving

...

Other

ASP

LCG

CSP

...
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SAT is ubiquitous in problem solving

Problem solving
with SAT

Embeddings

PBO
B&B

Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

MaxSAT

MCS

MUS

Min. Mod-
els

Backbones

Enumeration

CEGAR
SMT

CEGAR
QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC
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SAT can make the difference – propositional abduction
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• Topic(s): quantified optimization [ECAI’16]

• Instances: KR16 propositional abduction
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SAT can make the difference – axiom pinpointing
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• Topic(s): MUS enumeration; MCSes; implicit hitting sets [SAT’15]

• Instances: EL+ medical ontologies
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Part I

From NP to Beyond NP
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Outline – part A

Background

MaxSAT Solving

2QBF Solving
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Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems
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... and beyond NP – decision and function problems

∆p
0 = Σp

0 = P = Πp
0 = ∆p

1
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1 Πp

1 = coNP
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2
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2 Πp

2

∆p
3

Σp
3 Πp

3

...

F∆p
0 = FΣp
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1 FΠp
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FPNP = F∆p
2

FΣp
2 FΠp

2

F∆p
3
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3 FΠp

3
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Oracle-based problem solving – ideal scenario

Decision 
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries
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Oracle-based problem solving – in some settings

Decision 
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries
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Many problems to solve – within FPNP

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems
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Many problems to solve – within FPNP

Answer Problem Type
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Many problems to solve – within FPNP

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

Function Problems on Propositional Formulas

Optimization Problems

Minimal Sets

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.
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Selection of topics

Problem solving
with SAT

Embeddings

PBO
B&B

Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

MaxSAT

MCS

MUS

Min. Mod-
els

Backbones

Enumeration

CEGAR
SMT

CEGAR
QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

MaxSAT solving2QBF solving
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Outline

Background

MaxSAT Solving

2QBF Solving
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Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest cost MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications
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The MaxSAT (r)evolution – plain industrial instances
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The MaxSAT (r)evolution – partial
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The MaxSAT (r)evolution – weighted partial
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Many MaxSAT approaches

MaxSAT
Algorithms

Branch
& Bound

Iterative

Core
Guided

Iterative
MHS

Model
Guided

No unit prop;
No cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided approaches are
the most effective [MaxSAT14]
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Outline

Background

MaxSAT Solving
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

2QBF Solving
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Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Example CNF formula

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed
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i=1 ri ≤ 12

Relax all clauses; Set UB = 12 + 1

AtMostk/PB constraints

over all relaxation variables

All (possibly many)
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Formula is SAT; E.g. all xi = 0 and r1 = r7 = r9 = 1 (i.e. cost = 3)

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed
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Formula is SAT; E.g. x1 = x2 = 1; x3 = ... = x8 = 0 and r4 = r9 = 1
(i.e. cost = 2)
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over all relaxation variables

All (possibly many)
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Formula is UNSAT; terminate

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed
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Basic MaxSAT with iterative SAT solving
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i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed
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MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed
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MSU3 core-guided algorithm
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i=1 ri ≤ 1

Add relaxation variables and AtMostk , k = 1, constraint
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Relaxed soft clauses

become hard

Some clauses
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MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

Add new relaxation variables and update AtMostk , k=2, constraint

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed
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MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

Instance is now SAT

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed
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MSU3 core-guided algorithm
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i=1 ri ≤ 2

MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

27 / 73
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MSU3 core-guided algorithm
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MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed
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MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K:

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}
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MaxSAT solving with SAT oracles

• A sample of recent algorithms:

Algorithm # Oracle Queries Reference

Linear search SU Exponential*** [e.g. LBP10]

Binary search Linear* [e.g. FM06]

FM/WMSU1/WPM1 Exponential** [FM06,MSM08,MMSP09,ABL09a,ABGL12]

WPM2 Exponential** [ABL10,ABGL13]

Bin-Core-Dis Linear [HMMS11,MHMS12]

Iterative MHS Exponential [DB11,DB13a,DB13b]

* O(logm) queries with SAT oracle, for (partial) unweighted MaxSAT

** Weighted case; depends on computed cores
*** On # bits of problem instance (due to weights)

• But also additional recent work:
– Progression
– Soft cardinality constraints (OLL)
– MaxSAT resolution
– ...
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Abstraction refinement for QBF

• Many approaches proposed for solving QBF [...]

• Abstraction-refinement proposed for 2QBF in 2011 [JMS11]

• Extended to QBF in 2012 [JKMSC12]

• Significant impact in QBF competitions

• Influenced research in QBF solvers

– E.g. see conference papers in 2015/2016

• Ack: Slides adapted from M. Janota SAT’11 talk
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Problem definition

Given: ∃X∀Y .φ, where φ is a propositional formula

Question: Is there assignment ν to X variables such that ∀Y .φ[X/ν]?

Example

∃x1, x2 ∀y1, y2. (x1 → y1) ∧ (x2→y2)

solution: x1 = 0, x2 = 0

A simple algorithm

• While true
– Pick fresh assignment ν to X variables
– Check with SAT solver whether ∀Y .φ[X/ν] holds

I How? Check SAT(¬φ[X/ν]) is unsat
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Looking at assignments
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Expanding into SAT

∃X∀Y . φ =⇒ SAT

 ∧
µ∈B|Y |

φ[Y /µ]



Example

∃x1, x2 ∀y1, y2. (x1 → y1) ∧ (x2→y2)

(x1 → 0) ∧ (x2 → 0)
∧ (x1 → 0) ∧ (x2 → 1)
∧ (x1 → 1) ∧ (x2 → 0)
∧ (x1 → 1) ∧ (x2 → 1)
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Abstraction

• Consider only some set of assignments W ⊆ B|Y |∧
µ∈W

φ[Y /µ]

• A solution to the original problem is also a solution to the
abstraction ∧

µ∈B|Y |
φ[Y /µ] ⇒

∧
µ∈W

φ[Y /µ]

• But converse not true

– A solution to an abstraction is not necessarily a solution to the
original problem
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CEGAR loop

input : ∃X∀Y .φ
output: (true, ν) if there exists ν s.t. ∀Yφ[X/ν],

(false, –) otherwise

W ← ∅
while true do

(outc1, ν)← SAT(
∧

µ∈W φ[Y /µ]) // find a candidate

if outc1 = false then
return (false,–) // no candidate found

end
if ν is a solution // solution check
then

return (true, ν)
else

Grow W // refinement

end
end

37 / 73



CEGAR loop

input : ∃X∀Y .φ
output: (true, ν) if there exists ν s.t. ∀Yφ[X/ν],

(false, –) otherwise

W ← ∅
while true do

(outc1, ν)← SAT(
∧

µ∈W φ[Y /µ]) // find a candidate

if outc1 = false then
return (false,–) // no candidate found

end
if ν is a solution // solution check
then

return (true, ν)
else

Grow W // refinement

end
end

37 / 73



Checking for a solution

An assignment ν is a solution to ∃X∀Y .φ iff

∀Y .φ[X/ν] iff UNSAT(¬φ[X/ν])

If SAT(¬φ[X/ν]) for some µ, then µ is a counterexample to ν

Example

∃x1, x2 ∀y1, y2. (x1 → y1) ∧ (x2→y2)

• candidate: x1 = 1, x2 = 1

• ¬φ[X/ν] , ¬y1 ∨ ¬y2

• counterexamples: y1 = 0, y2 = 0
y1 = 0, y2 = 1
y1 = 1, y2 = 0

38 / 73



Checking for a solution

An assignment ν is a solution to ∃X∀Y .φ iff

∀Y .φ[X/ν] iff UNSAT(¬φ[X/ν])

If SAT(¬φ[X/ν]) for some µ, then µ is a counterexample to ν

Example

∃x1, x2 ∀y1, y2. (x1 → y1) ∧ (x2→y2)

• candidate: x1 = 1, x2 = 1

• ¬φ[X/ν] , ¬y1 ∨ ¬y2

• counterexamples: y1 = 0, y2 = 0
y1 = 0, y2 = 1
y1 = 1, y2 = 0

38 / 73



Checking for a solution

An assignment ν is a solution to ∃X∀Y .φ iff

∀Y .φ[X/ν] iff UNSAT(¬φ[X/ν])

If SAT(¬φ[X/ν]) for some µ, then µ is a counterexample to ν

Example

∃x1, x2 ∀y1, y2. (x1 → y1) ∧ (x2→y2)

• candidate: x1 = 1, x2 = 1

• ¬φ[X/ν] , ¬y1 ∨ ¬y2

• counterexamples: y1 = 0, y2 = 0
y1 = 0, y2 = 1
y1 = 1, y2 = 0

38 / 73



Refinement

Y
X
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2QBF algorithm

input : ∃X∀Y .φ
output: (true, ν) if there exists ν s.t. ∀Yφ[X/ν],

(false, –) otherwise

ω ← 1
while true do

(outc1, ν)← SAT(ω) // find a candidate solution

if outc1 = false then
return (false,–) // no candidate found

end

(outc2, µ)← SAT (¬φ[X/ν]) // find a counterexample

if outc2 = false then
return (true, ν) // candidate is a solution

end
ω ← ω ∧ φ[Y /µ] // refine

end
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Properties of refinement
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About refinement step

• No candidate for counterexample appears more than once

• Thus, upper bound on the number of iterations is:

min
{

2|X |, 2|Y |
}

• Heuristic: look for such counterexamples that are also
counterexamples to many other candidates, look for µ s.t.

¬φ[X/ν] ∧max
(
|{ν ′ | ¬φ[X/ν ′,Y /µ]}|

)
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Part II

Back Again (to NP)

43 / 73



Why back again to NP?

• Fact: There are many hard examples for resolution and CDCL

– One example are pigeonhole formulas (PHP) (more later)

• What we have been looking at?

– Reduce problems to one concrete problem, i.e. Horn MaxSAT
– Develop fast algorithms for Horn MaxSAT

I Use IHSes, MHSes, MUSes, etc.

• What we found out?

– Reductions are remarkably effective for PHP in practice

– There exist polynomial time proofs that PHP is unsatisfiable !

I Using core-guided algorithms; and
I Using MaxSAT resolution

– But, core-guided algorithms also use CDCL !
– Also, MHS MaxSAT algorithms are effective on hard problems
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Plan for part B

1. Recap PHP

2. Reduce SAT to Horn MaxSAT

– Also, what happens to PHP?

3. Develop polynomial time proofs of the unsatisfiability of PHP

– Using an MSU3-like MaxSAT algorithm
– Using MaxSAT resolution

4. Experimental results

– PHP, Urquhart, and combinations thereof

5. Detailed description available from:
https://arxiv.org/abs/1705.01477
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Outline

Pigeonhole Formulas

Reduction: SAT to Horn MaxSAT

Polynomial Time Proofs

Experimental Results
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Pigeonhole formulas I

• Pigeonhole principle:

– Typical: if m + 1 pigeons are distributed by m holes, then at least
one hole contains more than one pigeon

– Alternative: there exists no injective function mapping from
{1, 2, ...,m + 1} to {1, 2, ...,m}, for m ≥ 1

• Propositional formulation:

Does there exist assignment such that the m + 1 pigeons can
be placed into m holes?

• Encoding: xij variables
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Pigeonhole formulas II – propositional encoding PHPm+1
m

• Variables:

– xij = 1 iff the i th pigeon is placed in the j th hole, 1 ≤ i ≤ m + 1,
1 ≤ j ≤ m

• Constraints:

– Each pigeon must be placed in at least one hole, and each hole
must not have more than one pigeon∧m+1

i=1 AtLeast1(xi1, . . . , xim) ∧∧m
j=1 AtMost1(x1j , . . . , xm+1 j)

• Example encoding, with pairwise encoding for AtMost1 constraint:

Constraint Clause(s)

∧m+1
i=1 AtLeast1(xi1, . . . , xim) (xi1 ∨ . . . ∨ xim)

∧m
j=1AtMost1(x1j , . . . , xm+1 j) ∧m+1

r=2 ∧
r−1
s=1 (¬xrj ∨ ¬xsj)
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Reducing SAT to Horn MaxSAT

• Formula F with variables X = {x1, . . . , xt}

• Replace each original variable xi ∈ X by ni and pi , s.t.
– ni = 1 iff xi = 0
– pi = 1 iff xi = 1
– Add (hard Horn) constraint (¬ni ∨ ¬pi ) ⇐ set of clauses P

• Translate each clause cr ∈ F into (hard Horn) clause c ′r ∈ FH :
– Literal xi converted to ¬ni
– Literal ¬xi converted to ¬pi
– Resulting clause is goal clause ⇐ (can do better)

• Soft clauses: S = {(n1), . . . , (nt), (p1), . . . , (pt)}
• Horn MaxSAT formula: 〈FH ∪ P,S〉
• Claim:

F is SAT iff Horn MaxSAT formula has solution with cost ≤ t
– There exists assignment that satisfies hard clauses FH and at least t

soft clauses from S, i.e. cost ≤ t
– Due to P clauses, cost ≥ t; thus F is SAT iff cost = t
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An example

• CNF formula:

F = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3)

• New variables: {n1, p1, n2, p2, n3, p3}

• Soft clauses: S = {(n1), (p1), (n2), (p2), (n3), (p3)}

• Clauses in P:

P , (¬n1 ∨ ¬p1) ∧ (¬n2 ∨ ¬p2) ∧ (¬n3 ∨ ¬p3)

• Original clauses converted to:

FH , (¬n1 ∨ ¬p2 ∨ ¬n3) ∧ (¬n2 ∨ ¬n3) ∧ (¬p1 ∨ ¬p3)

• Resulting formula: 〈FH ∪ P,S〉

• F is satisfiable iff Horn MaxSAT formula has a solution with cost 3
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PHP as Horn MaxSAT

• New variables nij and pij , for each xij , 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m

• The soft clauses S, with |S| = 2m(m + 1), are given by

{ (n11), . . . , (n1m), . . . , (nm+1 1), . . . , (nm+1m),
(p11), . . . , (p1m), . . . , (pm+1 1), . . . , (pm+1m) }

• Clauses in P: P = {(¬nij ∨ ¬pij) | 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m}
• AtLeast1 constraints encoded as Li , 1 ≤ i ≤ m + 1

• AtMost1 constraints encoded as Mj , 1 ≤ j ≤ m

• Full reduction of PHP to Horn MaxSAT

〈H,S〉 =
〈
∧m+1
i=1 Li ∧ ∧mj=1Mj ∧ P,S

〉
• No more than m(m + 1) clauses can be satisfied, due to P
• PHPm+1

m is satisfiable iff there exists an assignment that satisfies
the hard clauses H and m(m + 1) soft clauses from S
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PHP as Horn MaxSAT II

• Clauses in each Li and in each Mj , with pairwise encoding

Original Constraint Encoded To Clauses

∧m+1
i=1 AtLeast1(xi1, . . . , xim) Li (¬ni1 ∨ . . . ∨ ¬nim)

∧m
j=1AtMost1(x1j , . . . , xm+1,j) Mj ∧m+1

r=2 ∧
r−1
s=1 (¬prj ∨ ¬psj)

• Note: constraints with key structural properties:

– Variables in each Li disjoint from any other Lk and Mj , k 6= i
– Variables in each Mj disjoint from any other Ml , l 6= j
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Main claims

Claim 1

Core-guided MaxSAT produces a lower bound on the number of
falsified clauses of ≥m(m + 1) + 1 in polynomial time
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falsified clauses of ≥m(m + 1) + 1 in polynomial time

Claim 2

MaxSAT resolution produces a lower bound on the number of falsified
clauses of ≥m(m + 1) + 1 in polynomial time

Corollary

Horn MaxSAT encoding enables polynomial time proofs of the
unsatisfiability of PHP instances, using CDCL SAT solvers
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Proof of claim 1 – outline

1. Assume MSU3 MaxSAT algorithm
– Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each Li and each Mj

– Each constraint disjoint from the others (but not from P)

3. Derive large enough lower bound on # of falsified clauses:

4. Each increase in the value of the lower bound obtained by unit
propagation (UP)

– In total: polynomial number of (linear time) UP runs
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Proof of claim 1 – unit propagation steps I

Constr Hard cls Soft cls Relaxed clauses
Updated
AtMostk

constr

LB
incr

Li (¬ni1 ∨ . . . ∨ ¬nim) (ni1), . . . , (nim)
(sil ∨ ni1),
1 ≤ l ≤ m

∑m
l=1 sil ≤ 1 1

Mj (¬p1j ∨ ¬p2j) (p1j), (p2j)
(r1j ∨ p1j),
(r2j ∨ p2j)

∑2
l=1 rlj ≤ 1 1

Mj

(¬p1j ∨ ¬p3j),
(¬p2j ∨ ¬p3j),

(r1j ∨ p1j),
(r2j ∨ p2j),∑2
l=1 rlj ≤ 1

(p3j) (r3j ∨ p3j)
∑3

l=1 rlj ≤ 2 1

· · ·

Mj

(¬p1j∨¬pm+1j), . . .,
(¬pmj ∨ ¬pm+1j),

(r1j ∨ p1j), . . .,
(rmj ∨ pmj),∑m
l=1 rlj ≤ m − 1

(pm+1j) (rm+1j ∨ pm+1j)
∑m+1

l=1 rlj ≤ m 1
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Proof of claim 1 – unit propagation steps II

Clauses Unit Propagation

(pk+1 j) pk+1 j = 1

(¬p1j ∨¬pk+1 j), . . . , (¬pkj ∨¬pk+1 j) p1j = . . . = pkj = 0

(r1j ∨ p1j), . . . , (rkj ∨ pkj) r1j = . . . = rkj = 1∑k
l=1 rlj ≤ k − 1

(∑k
l=1 rlj ≤ k − 1

)
`1⊥

• Key points:

– For each Li , UP raises LB by 1
– For each Mj , UP raises LB by m
– In total, UP raises LB by m(m + 1) + 1
– PHPm+1

m is unsatisfiable
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Proof of claim 2 – recap MaxSAT resolution

• Clauses: (x ∨ A, u) and (¬x ∨ B,w)

• m , min(u,w)

• u 	 w , (u ==>) ?> : u − w , with u ≥ w

• Example MaxSAT resolution steps:

Clause 1 Clause 2 Derived Clauses

(x ∨ A, u) (¬x ∨ B,w)
(A ∨ B,m), (x ∨ A, u 	m), (¬x ∨ B,w 	m),

(x ∨ A ∨ ¬B,m), (¬x ∨ ¬A ∨ B,m)

(x ∨ A, 1) (¬x ,>) (A, 1), (¬x ,>), (¬x ∨ ¬A, 1)
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Proof of claim 2 – outline

• Follow ideas used in previous proof

• Mimic unit propagation steps as MaxSAT resolution steps

• Each increase in LB corresponds to deriving one empty clause

• In total: polynomial number of steps, each running in polynomial
time
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Proof of claim 2 – key steps I

Constraint Clauses Resulting clause(s)

Li
(¬ni1 ∨ . . . ∨ ¬nim,>),

(ni1, 1)
(¬ni2 ∨ . . . ∨ ¬nim, 1) , . . .

Li
(¬ni2 ∨ . . . ∨ ¬nim, 1),

(ni2, 1)
(¬ni3 ∨ . . . ∨ ¬nim, 1) , . . .

· · ·

Li
(¬nim, 1),
(nim, 1)

(⊥, 1) , . . .

Mj
(¬p1j ∨ ¬p2j ,>),

(p1j , 1)
(¬p2j , 1), (¬p1j ∨ ¬p2j ,>), (p1j ∨ p2j , 1)

Mj
(¬p2j , 1),
(p2j , 1)

(⊥, 1)

Mj
(¬p1j ∨ ¬p3j ,>),

(p1j ∨ p2j , 1)

(p2j ∨ ¬p3j , 1) , (¬p1j ∨ ¬p3j ,>),

(¬p1j ∨¬p3j ∨¬p2j , 1), (p1j ∨ p2j ∨ p3j , 1)

Mj
(¬p2j ∨ ¬p3j ,>),

(p2j ∨ ¬p3j , 1)
(¬p3j , 1) , (¬p2j ∨ ¬p3j ,>)

Mj
(¬p3j , 1),
(p3j , 1)

(⊥, 1)
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Proof of claim 2 – key steps II

Constraint Clauses Resulting clause(s)

· · ·

Mj
(¬p1j ∨ ¬pm+1j ,>),
(p1j ∨ . . . ∨ pmj , 1)

(p2j . . . pmj ∨ ¬pm+1j , 1) , . . .

Mj

(¬p2j ∨ ¬pm+1j ,>),
(p2j ∨ . . . ∨ pmj ∨
¬pm+1j , 1)

(p3j . . . pmj ∨ ¬pm+1j , 1) , . . .

· · ·

Mj
(¬pmj ∨ ¬pm+1j ,>),

(pmj ∨ ¬pm+1j , 1)
¬pm+1j , 1) , . . .

Mj
(pm+1j , 1),
(¬pm+1j , 1)

(⊥, 1)

• Key points:

– For each Li , derive 1 empty clause
– For each Mj , derive m empty clauses
– In total, derive m(m + 1) + 1 empty clauses
– PHPm+1

m is unsatisfiable
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Experimental setup

• Instances:

– PHP-pw (46), PHP-sc (46), Urquhart (84), Comb (96)

• Solvers:

SAT SAT+ IHS MaxSAT CG MaxSAT MRes MIP OPB BDD

minisat glucose lgl crypto maxhs lmhs mscg wbo wpm3 eva lp cc sat4j∗ zres
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Results on PHP instances: pw vs. sc
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Effect of P clauses
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Effect of P clauses on mscg and wbo
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Results on Urquhart & combined instances
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More detail in arXiv report

“On Tackling the Limits of Resolution in SAT Solving”

A. Ignatiev, A. Morgado, and J. Marques-Silva

https://arxiv.org/abs/1705.01477
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Conclusions

• Covered some examples of problem solving using SAT oracles
– MaxSAT solving
– 2QBF solving

• But, many more examples:
– MUS & MCS extraction
– MUS & MCS enumeration
– Prime compilation
– Implicit hitting sets
– Quantification: decision, QMaxSAT, abduction, ...
– Smallest MUSes
– Approximate model counting
– Also: backbones; autarkies/lean kernels, ...
– Also: (many) practical applications

• (Horn) MaxSAT solvers can solve (in polynomial time) hard
instances for resolution

– If equipped with the right reduction
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Some research topics

• Beyond NP:
– Query complexity
– Enumeration
– Quantification
– Implicit hitting sets & duality
– ...

• Applications:
– Diagnosis
– Axiom pinpointing
– Planning
– Reachability
– Synthesis
– Networking
– Configuration
– Argumentation
– ...

• Also, where to go with Horn MaxSAT?
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Thank You
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