Computing with Oracles
From NP to Beyond NP and Back Again

Joao Marques-Silva

University of Lisbon, Portugal

Beyond NP Meeting

Paris, France

10 May 2017

73,

The SAT disruption

e SAT is NP-complete

[Cook'71]

/73

The SAT disruption

e SAT is NP-complete [Cook'71]
— But, CDCL SAT solving is a success story of Computer Science

/73

The SAT disruption

e SAT is NP-complete [Cook'71]

— But, CDCL SAT solving is a success story of Computer Science
— Hundreds (thousands?) of practical applications

Noise l.\“aIysileJd_xi_I-BaIslellIliagrmsii'1 . G
inateCoering OIS s Technology Mappin
Voo Sty Wnagenent Fauft Localation Pedigree Consistenc Fulﬁ:ytinnli)pecfmgoigﬁusn

Maximum SatisfiabilityConfigurationyeyination Analysis
Software Testlngﬁlterﬂesign Switching Network Verification

Equivalence Checking Resource Constrained Scheduling

satISflahILﬂuM? gﬂ!?n Iulr'n?"ﬂi'esPackageManagement Symh}prl)lgmecttiry Evaluation
Softwarq{ym%tylﬁggchecking&ﬂ!‘ﬁiﬁ%ﬂiﬂ T ek Tl
_Model Findin
Test Pattern Generation Pl anning;!ll a Ii.ll!gwlcaSEEﬂMS(IlSd el)lesicz(gllllﬂghﬁgléilngg

Power Es“’"““““l}ircu_it_Delay Eumputation Genome Rearrangement)
Test Suite Minimization lazy cla“se Ge“eratmn
Pseudo-Boolean Formulas

SAT solver improvement |

CPU Time (in seconds)

1200

1000

800

200

[Source: Le Berre 2013]

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

[s}

aq

-

OO0 GOwI

T T T
Limmat (2002)
Zchaff (2002)
Berkmin (2002)
Forkll& (2003)
Siege (2003

Rsat (2007)
Minisat 2.1 (2008)
Precosat (2009)
Glucose (2009)

Contrasat {201 l)

Glucose 2.1 (2012

Llngelln% SS?E' (2012)
Glucose

Lingeling aqw (20‘1 k)]

T 5 T ! T

Number of problems solved

200

3/73

SAT solver improvement ||

Maximal allowed time (seconds)

2500

2000

1500

1000

500

[Source: Simon 2015]

40

T
berkmin561 (2002)
Forklift (2003)
minisat-static (2005)
minisat (2007)
precosat (2009)
glucose (2011)
lingeling-aqw (2013)
glucose (2014)
lingeling-bag-ml (2015)
glucose-adapt-phase (2016)

PH$9ROL

60 80 100
Number of solved problems (over the 300 benchs from 2011)

200 220

4/73

SAT is the engines’

Other

engine

Engines using
SAT engines

Theorem Model
proving finding

Boolean

5/73

SAT is ubiquitous in problem solving

B&B
Search

Planning Enumeratio

Problem solving

Encodings N
with SAT

Embeddings OPT SAT

Lazy SMT

MaxSAT

Oracles

Enumeratiol

Backbones

6/73

SAT can make the difference — propositional abduction

10*

103}

10?

10!

AbHS+

10°

107 s

DY A A : : : L
1073 1072 107! 10° 10! 10° 10° 10*

Hyper*
e Topic(s): quantified optimization [ECAI'16]

e Instances: KR16 propositional abduction
7/73

SAT can make the difference — axiom pinpointing

10*

ELTSAT

1072 il

; ; ; A
1072 107! 10° 10! 10 10° 10*
EL2MUS

e Topic(s): MUS enumeration; MCSes; implicit hitting sets [SAT'15]

e Instances: £L£T medical ontologies

Part |

From NP to Beyond NP

/73

Outline — part A

Background
MaxSAT Solving

2QBF Solving

10/73

Outline

Background

11/73

Beyond decision problems

Answer Problem Type

12/73

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

12/73

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution

12/73

Beyond decision problems

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

12/73

Beyond decision problems

Answer

Problem Type

Yes/No
Some solution

All solutions

Decision Problems

Function Problems

12/73

Beyond decision problems

Answer

Problem Type

Yes/No
Some solution

All solutions

Decision Problems
Function Problems

Enumeration Problems

12/73

.. and beyond NP — decision and function problems

> ng FX FMg

%
N
N

N ng Fx5

PNP = AP FPNP = FAS
NP = MY = coNP FNP = FX} FM$ = coFNP

N S N S

AD =3P =P =n5=A° FAP = FXh = FP = FM5 = FA}

13/73

Oracle-based problem solving — ideal scenario

Bounded # of
calls / queries

Poly-time Yes/No + Decision
Algorithm Witness Procedure

SAT, SMT, CSP, ...
Solver / Oracle

14 /73

Oracle-based problem solving — in some settings

Bounded # of
calls / queries

Poly-time Yes/No + Decision
Algorithm Witness Procedure

SAT, SMT, CSP, ...
Solver / Oracle

15/73

Many problems to solve — within FPNP

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

All solutions Enumeration Problems

16/73

Many problems to solve — within FPNP

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

All solutions Enumeration Problems

~
Function Problems on Propositional Formulas

MaxSAT MinSAT
PBO WBO

Minimal Models . N
Prime Implicants

Maximal Models Autarkies
Backbones Prime Implicates
MUSes MCSes MESes Indep. Vars
FSes MSSes MDSes Implicant Ext.
MNSes Implicate Ext.
MCFSes
(. J

16/73

Many problems to solve — within FPNP

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

All solutions Enumeration Problems

'd N\
Function Problems on Propositional Formulas

// Optimization Problems)
\ MaxSAT MinSAT |

z Minimal Sets S

7RnImalModEle Prime Implicants \

Maximal Models Autarkies \

Backbones Prime Implicates

MCSes

)
\
| Muses MESes incepyVars

\ MDSes Implicant Ext. /

MSSes
\ /
\ MESSS MNSes Implicate Ext. 7
N MCFSes 4

16/73

Selection of topics

BB
Search

Eager SMT

Planning Enumeratiol

Problem solving

i
W with SAT

Embeddings OPT SAT

MaxSAT

2QBF solving Oracles MaxSAT solving

Min. Mod-
els

Backbones

17/73

Outline

MaxSAT Solving

18/73

Recap MaxSAT

Xe V X2 —1Xg V X2 —x2 V X1 X1
—1Xg V Xg Xe V —1Xg X2 V Xg —1Xq V Xz
x7 V X5 —x7 V Xz —X5 V X3 X3

¢ Given unsatisfiable formula, find largest subset of clauses that is

satisfiable

19/73

Recap MaxSAT

X6 V X2 —Xg V X2 —x2 V X1 X1
—1Xg V Xg Xe V —Xg X2 V Xg X3 V Xg
x7 V Xs —x7 V Xz X5 V X3 X3

¢ Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

e A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

19/73

Recap MaxSAT

Xe V X2 —Xg V Xo —x2 V X1 1X1
—1Xg V Xg Xe V —Xg X2 V Xg —1Xq V Xz
x7 V X5 —x7 V Xz X5 V X3 X3

¢ Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

e A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

e The MaxSAT solution is one of the smallest MCSes

19/73

Recap MaxSAT

Xe V X2 —Xg V Xo —x2 V X1 X1
—1Xg V Xg Xe V —Xg X2 V Xg —1Xq V Xz
x7 V X5 —x7 V Xz X5 V X3 X3

¢ Given unsatisfiable formula, find largest subset of clauses that is
satisfiable
e A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula
e The MaxSAT solution is one of the smallest MCSes
— Note: Clauses can have weights & there can be hard clauses

19/73

Recap MaxSAT

Xe V X2 —Xg V Xo —x2 V X1 X1
—1Xg V Xg Xe V —Xg X2 V Xg —1Xq V Xz
x7 V X5 —x7 V Xz X5 V X3 X3

¢ Given unsatisfiable formula, find largest subset of clauses that is
satisfiable
e A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula
e The MaxSAT solution is one of the smallest cost MCSes
— Note: Clauses can have weights & there can be hard clauses

19/73

Recap MaxSAT

Xe V X2 —Xg V Xo —x2 V X1 X1
—1Xg V Xg Xe V —Xg X2 V Xg —1Xq V Xz
x7 V X5 —x7 V Xz X5 V X3 X3

¢ Given unsatisfiable formula, find largest subset of clauses that is
satisfiable
e A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula
The MaxSAT solution is one of the smallest cost MCSes
— Note: Clauses can have weights & there can be hard clauses

e Many practical applications

19/73

The MaxSAT (r)evolution — plain industrial instances

CPU time in seconds

300

250 r

200

150

100

50

Number x of instances solved in y seconds

Opén-WBOLIn — ‘f
pmifumax-13 - o *
WPM1-11 - x--- =7
wbo-1.4a-10 = P
wbo1.6-cnf-12 P
E ’X
L X,/’
vl)(’*"*:_ﬂ
- B ox
‘ﬂ X
S, B B! ’?,ﬁﬁ N EEE i jiﬁ .
0 o) 10 15 20 25 30 35 40

Number of instances

Source: [MaxSAT 2014 organizers|

20/73

The MaxSAT (r)evolution — plain industrial instances

CPU time in seconds

300

250

200

150

100

50

Number x of instances solved in y seconds

Opén-WBOLIn — ‘f
pmifumax-13 - o *
L WPM1-11 - oo A
wbo-1.4a-10 o g
wbo1.6-cnf-12
| ***
.
E ’X
L J
*r ™ o
r ,?5'11 ad =X
‘ﬂ«) % K-
oo XN B EF S ;3 500
0 5 10 15 20 25 30 35 40
Number of instances 48.1% more

Source: [MaxSAT 2014 organizers|

instances solved!

20/73

The MaxSAT (r)evolution — partial

Number x of instances solved in y seconds

300) : ' T o ¥ T
Open-WBO-In —+— ., T
QMaxSAT2-mt-13 ——-x--- G N
L QMaxSat-g2-12 - o I |
250 QMaxSat0.4-11 e g ;gf
2} QMaxSat-10 s ;
5 ¥ F
S 200 ; |
@ !} /
S 150 | j # 7
£
z 100 f _
o
50 |
0 = ! . . .

0 50 100 150 200 250 300 350 400
Number of instances

Source: [MaxSAT 2014 organizers|
21/73

The MaxSAT (r)evolution — partial

CPU time in seconds

300

250 r

200

150

100

50

Number x of instances solved in y seconds

Number of instances

Source: [MaxSAT 2014 organizers]

Open-WBO-In —+— il T
QMaxSAT2-mt-13) HE
QMaxSat-g2-12 - o ;’5 i |
QMaxSat0.4-11 o I
QMaxSat-10 g ;
¥
j /
0 50 100 150 200 250 300 350 = 400

71.5% more
instances solved!

21/73

The MaxSAT (r)evolution — weighted partial

Number x of instances solved in y seconds

300

Eva500a —— £ X
WPM1-2013 ¥ §
250 |- WPM1-11 - oo 3 3
pwbo2.1-12 = @ |
» wbo-1.4a-wenf-10 g
8 s |
S 200 ¥ R
3 i
£ 150 1
[0
£
2 100 | -
(@]
50 E
0 : = :
0 50 100 150 200 250 300 350

Number of instances

Source: [MaxSAT 2014 organizers|
22/73

The MaxSAT (r)evolution — weighted partial

Number x of instances solved in y seconds

300

Eva500a —+— £ X
WPM1-2013 = ¥ §
250 |- WPM1-11 - oo 3 3
pwbo2.1-12 = @ |
- wbo-1.4a-wenf-10 g
8 1
S 200 ¥ 1
3 7
£ 150 1
[0
E
2 100 | -
(@]
50 1
0 L : - :
0 50 100 150 200 250 300 350
Number of instances BiL5% e
Source: [MaxSAT 2014 organizers| instances solved!

22/73

Many MaxSAT approaches

“1 MaxSAT Y‘

Algorithms

- §==

Many MaxSAT approaches

Branch No unit prop;
& Bound No cl. learning
NS EH R Model i All cls relaxed
models Guided Iterative
MaxSAT
Algorithms
Iterative e Core Relax cls given
MHS & SAT MHS Cuities unsat cores

e For practical (industrial) instances: core-guided approaches are
the most effective [MaxSAT14]

23/73

Outline

MaxSAT Solving
Iterative SAT Solving

24 /73

Basic MaxSAT with iterative SAT solving

Xe V Xo —Xg V Xo X2 V X1 X1
—Xg V Xg Xe V —Xg X2 V Xg X4 V Xg
x7 V Xz =x7 V Xs —X5 V X3 —1X3

Example CNF formula

25/73

Basic MaxSAT with iterative SAT solving

Xe V X0V =X V X2V —x2 VXx1Vr3
—Xg V XgVrsg Xe V —1Xg Vg X V x4V ry

X7 V X5Vrg =x7VxsVrig x5V X3V

ZI lr’S]‘2

Relax all clauses; Set UB =12 + 1

—X1Vry

—Xq V X5Vrg

—x3V 112

25/73

Basic MaxSAT with iterative SAT solving

Xe V X0V —Xg V X2V —x2 VXx1Vr3 —x1Vry
X6 V XgVrs Xe V —XgVrg X2 V x4V re x4 V X5Vrg

X7 V X5V g —x7VXxsVrg —Xx5V X3V —x3Vrio

Z, 1 Hi <12

Formula is SAT; E.g. all ; =0 and r; = r; = rg = 1 (i.e. cost = 3)

25/73

Basic MaxSAT with iterative SAT solving

Xe V X0V =Xg V X0V —x2 VXx1Vr3 —x1Viy
=X V XgVrsg Xe V —XgVrg Xo V XqVry —Xg4 V X5Vrg

x7 V x5V rg =x7VXxsVrg —xs5V X3V —x3V o

21121 ri <2

Refine UB = 3

25/73

Basic MaxSAT with iterative SAT solving

Xe V X0V —1Xg V X0V —x2 VX1V —x1Vrg

X6 V XgVrs Xe V —xgVrg X2 V X4V Iy =X V X5Vrg

X7 V X5V g X7V XxsVrg —X5VXx3Vri —x3V o
Y2y <2
Formula is SAT; Eg. x1i=x =1, x3=...=xs=0andn=r=1

(i.e. cost =2)

25/73

Basic MaxSAT with iterative SAT solving

Xe V X0V —Xg V X2V —x2 V Xx1Vr3
—Xg V XgVrsg Xe V —XgVrg Xo V xqVry

x7 V X5V rg =x7V XxsVrg —xs5V X3V

Z:lil ri<1

Refine UB = 2

—x1Vry

=X V X5Vrg

X3V ri2

25/73

Basic MaxSAT with iterative SAT solving

Xe V X0V —Xg V X0V —x2 VXx1Vnr3 —x1Vry
X6 V XgVrs Xe V —XgVrg Xo V xXqVry —xq V X5Vrg

X7 V X5V g —x7 Vx5V —X5V X3V —x3Vrio

Z}il ri <1

Formula is UNSAT; terminate

25/73

Basic MaxSAT with iterative SAT solving

Xe V X0V —Xg V X2V —x2 V Xx1Vr3
—Xg V XgVrsg Xe V —XgVrg Xo V xqVry

x7 V X5V rg =x7V XxsVrg —xs5V X3V

Z:lil ri<1

MaxSAT solution is last satisfied UB: UB = 2

—x1Vry

=X V X5Vrg

X3V ri2

25/73

Basic MaxSAT with iterative SAT solving

Xe V X0V —Xg V X2V —x2 V Xx1Vr3
—Xg V XgVrsg Xe V —XgVrg Xo V xqVry

x7 V X5V rg =x7V XxsVrg —xs5V X3V
12
doisiri<1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints
over all relaxation variables

—x1Vry
=X V X5Vrg

—x3Vrio

All (possibly many)
soft clauses relaxed

25/73

Outline

MaxSAT Solving

Core-Guided Algorithms

26 /73

MSU3 core-guided algorithm

X6 V Xo —Xg V Xo X2 V X1
—Xg V Xg Xe V —1Xg X2 V Xy
x7 V X5 —x7 V Xs —X5 V X3

Example CNF formula

- X].

X4 V Xg

- X3

27/73

MSU3 core-guided algorithm

X6 V Xo —Xg V Xo —x2 V X1 X1
—Xg V Xg Xe V —Xg X2 V Xy x4 V Xg
x7 V X5 —x7 V Xs —x5 V X3 —1X3

Formula is UNSAT; OPT < || — 1; Get unsat core

27 /73

MSU3 core-guided algorithm

X6 V Xo —Xg V Xo X2V x1Vn —x1Vr

—Xg V Xg Xe V —1Xg Xo V X4V 13 —Xg4 V X5V

X7 V Xg —x7 V Xz x5 V x3Vrs —x3Vrg
Z?:l ri<1

Add relaxation variables and AtMostk, k = 1, constraint

27/73

MSU3 core-guided algorithm

@2 —Xg V Xo —x2 Vx1Vn —x1Vh
=X V Xg Xe V —Xg X2 V x4Vr3 =Xq V X5V 1y

—x7 V Xg x5 V X3Vrs —x3Vrg

Formula is (again) UNSAT; OPT < || — 2; Get unsat core

27 /73

MSU3 core-guided algorithm

Xe V X0V ry —Xg V Xo\Vrg X2V x1Vn —x1Vr

—Xg V Xg Xe V —1Xg Xo V X4V 13 —Xg4 V X5V
x7 V X5V rg —x7VXxsVro x5V X3Vrs —x3Vrg
<2

Add new relaxation variables and update AtMostk, k=2, constraint

27/73

MSU3 core-guided algorithm

Xe V X0V re —Xg V XoVrg —xo V x1Vn —x1Vr

—Xg V Xg Xe V —Xg X2 V x4V 13 =X V X5Vig
X7 V X5V g X7V XxsVrg X5V X3Vry —x3Vrg
2}21 ri <2

Instance is now SAT

27 /73

MSU3 core-guided algorithm

Xe V X0V ry —Xg V Xo\Vrg —x2 VXx1Vn
—Xg V Xg Xe V —1Xg Xo V X4V 13
x7 V x5V rg —x7VXxsVrg X5V X3Vrs

2}21 ri <2

MaxSAT solution is |p| —Z =12 —2 =10

—x1Vh

—Xg4 V X5V

—x3Vrg

27/73

MSU3 core-guided algorithm

Xe V X0V ry —Xg V Xo\Vrg —x2 VXx1Vn
—Xg V Xg Xe V —1Xg Xo V X4V 13
x7 V x5V rg —x7VXxsVrg X5V X3Vrs

2}21 ri <2

MaxSAT solution is |p| —Z =12 —2 =10

AtMostk/PB

constraints used

—x1Vh

—Xg4 V X5V

—x3Vrg

Relaxed soft clauses

become hard

27/73

MSU3 core-guided algorithm

Xe V X0V ry —Xg V Xo\Vrg
—1Xg V Xg X6 V —1Xg

x7 V x5V rg —=x7 V X5V rig

2}21 ri <2

—x2 VXx1Vn

Xo V X4V 13

—X5 V X3V s

MaxSAT solution is |p| —Z = 12 —2 =10

AtMostk/PB Some clauses

constraints used not relaxed

—x1Vh

—Xg4 V X5V

—x3Vrg

Relaxed soft clauses

become hard

27/73

Outline

MaxSAT Solving

Minimum Hitting Sets

28 /73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Cog = X7V X5 Clo="Xx7VXs Ci1="XVX3 Cl2 = 7X3

® Find MHS of K:

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Cog = X7V X5 Clo="Xx7VXs Ci1="XVX3 Cl2 = 7X3

® Find MHS of K: 0

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Cog = X7V X5 Clo="Xx7VXs Ci1="XVX3 Cl2 = 7X3

® Find MHS of K: 0
o SAT(F\0)?

29/73

MHS approach for MaxSAT

=XV Xxo Q="X%Vx G="xVX
Cs = —Xg V Xg Ce = Xp V —Xg g =x2V X4

Co=x7V X5 Clo="X7VXs C11="X5V X3

® Find MHS of K: 0
e SAT(F\ 0)? No

Cqp = X1

Cg = X3 V X5

Clp = X3

29/73

MHS approach for MaxSAT

C1:X6\/X2 C2:_‘X6\/X2 C3:_‘X2\/X1
C5:—\X6\/X8 CGZXG\/_'Xs C7:X2\/X4

Co = x7 V X5 Clo="X7VXs C11= "XV X3

® Find MHS of K: 0
e SAT(F\0)? No

e Core of F: {c1,, 3,4}

Cqp = X1

g = x4 V X5

Clp = X3

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Cog = X7V X5 Clo="Xx7VXs Ci1="X5V X3 Clp = X3

K= {{C17 C, C3, C4}}

® Find MHS of K:
e SAT(F\ ()? No
e Core of F: {c1, @, c3, ca}. Update K

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K= {{C17 C, C3, C4}}

® Find MHS of K:

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K= {{C17 C, C3, C4}}

e Find MHS of K: E.g. {c1}

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K= {{C17 C, C3, C4}}

® Find MHS of K: E.g. {ci}
o SAT(F\{a})?

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy

Cog = X7V Xz Cilo= X7 VX5 C11="X5VX3

K= {{C17 C, C3, C4}}

e Find MHS of K: E.g. {c1}
e SAT(F\{a})? No

Cq = X1

g = x4 V X5

Cl2 = 7X3

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy

Cog = X7V Xz Clo="X7VXs C11="X5V X3

K= {{C17 C, C3, C4}}

e Find MHS of K: E.g. {c1}
e SAT(F\{a})? No

e Core of F: {cy, c10, C11, C12}

Cq = X1

g = x4 V X5

Cl2 = 7X3

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Cog = X7V X5 Clo="Xx7VXs Ci1="XVX3 Cl2 = 7X3

K={{a, e, c,a},{c,co,c,czt}

e Find MHS of K: E.g. {c1}
e SAT(F\{a})? No
e Core of F: {c, c10, c11, c12}. Update K

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K ={{a, c2, 3, ca}, {co, cr0, c11, cr2}}

® Find MHS of K:

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K ={{a, c2, 3, ca}, {co, cr0, c11, cr2}}

® Find MHS of K: E.g. {c1, 0}

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K ={{a, c2, 3, ca}, {co, cr0, c11, cr2}}

® Find MHS of K: E.g. {c1, 0}
e SAT(F\{c1,c})?

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K ={{a, c2, 3, ca}, {co, cr0, c11, cr2}}

® Find MHS of K: E.g. {c1, 0}
e SAT(F\ {c1,})? No

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K={{a, e, c,a},{c,co,c,czt}

® Find MHS of K: E.g. {c1, 0}
e SAT(F\ {c1,})? No

e Core of F: {c3, ca, c7, Cs, C11, C12}

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K ={{a, e, ca,a},{cw,co, a1, cz},{c,a,c,cs,cr, cia}}

® Find MHS of K: E.g. {c1, 0}
e SAT(F\ {c1,})? No

e Core of F: {3, &, cr, 3, c11, c12}. Update K

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K ={{a, e, ca,a},{cw,co, a1, cz},{c,a,c,cs,cr, cia}}

® Find MHS of K:

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K ={{a, e, ca,a},{cw,co, a1, cz},{c,a,c,cs,cr, cia}}

® Find MHS of K: E.g. {cs, o}

29/73

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K ={{a, e, ca,a},{cw,co, a1, cz},{c,a,c,cs,cr, cia}}

® Find MHS of K: E.g. {cs, o}
e SAT(F\{cs,c0})?

29/73

MHS approach for MaxSAT

c1L =X VX2 C = X5 V X2 3= VX Cyp = X1
Cs = —Xg V Xg Ce = Xp V —Xg 7 =XV Xy cg = x4 V Xz
Co = X7V Xz Clo="X7VXs C11="X5VX3 Clp = —X3

K= {{C1> €, C3, C4}7 {C97 €10, C11, C12}7 {C3> C4, C7, C8, C11, Cl?}}

® Find MHS of K: E.g. {cs, o}
® SAT(F\ {cs, c0})? Yes

29/73

MHS approach for MaxSAT

c1L =X VX2 C = X5 V X2 3= VX Cyp = X1
Cs = —Xg V Xg Ce = Xp V —Xg 7 =XV Xy cg = x4 V Xz
Co = X7V Xz Clo="X7VXs C11="X5VX3 Clp = —X3

K= {{Ch €, C3, C4}7 {C97 C10, C11, C12}7 {C37 C4, C7, Cs, C11, C12}}

® Find MHS of K: E.g. {cs, o}
® SAT(F\ {cs, c0})? Yes

® Terminate & return 2

29/73

MaxSAT solving with SAT oracles

e A sample of recent algorithms:

Algorithm # Oracle Queries Reference
Linear search SU Exponential*** [e.g. LBP10]
Binary search Linear* [e.g. FMOG]
FM/WMSU1/WPM1 Exponential** [FMO06,MSM08,MMSP09,ABLO%a, ABGL12]
WPM2 Exponential** [ABL10,ABGL13]
Bin-Core-Dis Linear [HMMS11,MHMS12]
Iterative MHS Exponential [DB11,DB13a,DB13b]

* O(log m) queries with SAT oracle, for (partial) unweighted MaxSAT
ok
K4k

Weighted case; depends on computed cores
On # bits of problem instance (due to weights)
e But also additional recent work:
— Progression
Soft cardinality constraints (OLL)
MaxSAT resolution

30/73

Outline

2QBF Solving

31/73

Abstraction refinement for QBF

e Many approaches proposed for solving QBF (]

Abstraction-refinement proposed for 2QBF in 2011 [Ms11]

Extended to QBF in 2012 [JKMSC12]

Significant impact in QBF competitions

Influenced research in QBF solvers
— E.g. see conference papers in 2015/2016

o Ack: Slides adapted from M. Janota SAT'11 talk

32/73

Problem definition

Given: JXVY.¢, where ¢ is a propositional formula
Question: Is there assignment v to X variables such that VY.¢[X/v]?

33/73

Problem definition

Given: JXVY.¢, where ¢ is a propositional formula
Question: Is there assignment v to X variables such that VY.¢[X/v]?

Example

Ix1, % Yy, yo. (x1 = y1) A (o= y2)

solution: x1 =0,x =0

33/73

Problem definition

Given: JXVY.¢, where ¢ is a propositional formula
Question: Is there assignment v to X variables such that VY.¢[X/v]?

Example

Ix1, % Yy, yo. (x1 = y1) A (o= y2)

solution: x1 =0,x =0

A simple algorithm

e While true

— Pick fresh assignment v to X variables
— Check with SAT solver whether VY .¢[X/v] holds

L)1

Problem definition

Given: JXVY.¢, where ¢ is a propositional formula
Question: Is there assignment v to X variables such that VY.¢[X/v]?

Example

Ix1, % Yy, yo. (x1 = y1) A (o= y2)

solution: x1 =0,x =0

A simple algorithm

e While true

— Pick fresh assignment v to X variables
— Check with SAT solver whether VY .¢[X/v] holds

» How?

L)1

Problem definition

Given: JXVY.¢, where ¢ is a propositional formula
Question: Is there assignment v to X variables such that VY.¢[X/v]?

Example

Ix1, % Yy, yo. (x1 = y1) A (o= y2)

solution: x1 =0,x =0

A simple algorithm

e While true

— Pick fresh assignment v to X variables
— Check with SAT solver whether VY .¢[X/v] holds

» How? Check SAT(—¢[X/v]) is unsat

33/73

Looking at assignments

Y H

34 /73

Looking at assignments

Y H

34 /73

Looking at assignments

34 /73

Looking at assignments

34 /73

Looking at assignments

Y K
X

1110 0|1
vi1|1 1)1

34 /73

Expanding into SAT

IXVY. ¢ = SAT(A ¢[Y/u]>

MGB‘Yl

35/73

Expanding into SAT

IXVY. ¢ = SAT(A ¢>[Y/u])

MGB‘Yl
Example

Ixt, x2 Yy1, yo. (x1 = y1) A (x2—y2)

(X1 = 0) (X2 — 0)
VAN (X1—>0)/\(X2—>1)
A (X1—>1)/\(X2—>0)
VAN (X1—>1)/\(X2—>1)

35/73

Abstraction

e Consider only some set of assignments W C B!Y

A LY /ul

pnew

36/73

Abstraction

e Consider only some set of assignments W C B!Y

A LY /ul

pnew

e A solution to the original problem is also a solution to the
abstraction
N oY/l = N\ ¢lY/u

ueBlYl new

36/73

Abstraction

e Consider only some set of assignments W C B!Y

A LY /ul

new

e A solution to the original problem is also a solution to the
abstraction
N elY/ml = N\ olY/ul

ueBlYl new

e But converse not true

— A solution to an abstraction is not necessarily a solution to the
original problem

36

73

CEGAR loop

input : AXVY.¢
output: (true, v) if there exists v s.t. VY ¢[X /1],
(false,—) otherwise

W« 0
while true do
(outcy, v) <= SAT(A ew 8lY /1) // find a candidate
if outcy = false then

| return (false,-) // no candidate found
end
if v is a solution // solution check
then

| return (true, v)
else

| Grow W // refinement
end
end

37/73

CEGAR loop

input : AXVY.¢
output: (true, v) if there exists v s.t. VY ¢[X/v],
(false,—) otherwise

W« 0
while true do
(outcy, v) <= SAT(A ew 8lY /1) // find a candidate
if outcy = false then

| return (false,-) // no candidate found
end
if v is a solution // solution check
then

| return (true, v)
else

| Grow W // refinement
end
end

37/73

Checking for a solution

An assignment v is a solution to IXVY.¢ iff

VY.$[X/v] iff UNSAT(=¢[X/v])

38/73

Checking for a solution

An assignment v is a solution to IXVY.¢ iff
VY.p[X/v] iff UNSAT(—¢[X/v])

If SAT(—¢[X/v]) for some u, then y is a counterexample to v

38/73

Checking for a solution

An assignment v is a solution to IXVY.¢ iff
VY.p[X/v] iff UNSAT(—¢[X/v])

If SAT(—¢[X/v]) for some u, then y is a counterexample to v
Example
Ix1, %2 Vy1, y2. (1 = y1) A (xe—y2)

e candidate: x; =1, =1

[] —|¢[X/1/] é _‘_yl \/ —|y2

e counterexamples: y; =0,y, =0

}’1:07)/2:1
yi=1y,=0

38/73

Refinement

39

Refinement

39/73

Refinement

W/

39/73

2QBF algorithm

input : AXVY.¢
output: (true, v) if there exists v s.t. VY @[X/v],
(false,—) otherwise

w1
while true do
(outcy, v) «+ SAT(w) // find a candidate solution
if outcy = false then
‘ return (false,-) // no candidate found
end
(outcp, p) < SAT (—¢[X/v]) // find a counterexample
if outcy, = false then
‘ return (true, v) // candidate is a solution
end
w+wAPlY/u] // refine
end

40/73

Properties of refinement

Y I
X
”mni11 1|0
|11 110

41/73

Properties of refinement

Y I
X
”mni11 1|0
1111 110
pEYENREEN |
w
W/

41/73

Properties of refinement

X X ¥ x

W/

41/73

About refinement step

e No candidate for counterexample appears more than once

e Thus, upper bound on the number of iterations is:

T {2|X|, 2‘”}

42 /73

About refinement step

e No candidate for counterexample appears more than once

e Thus, upper bound on the number of iterations is:

T {2|X|, 2‘”}

e Heuristic: look for such counterexamples that are also

counterexamples to many other candidates, look for u s.t.

=X /v] Amax ({v' | ~g[X /v, Y /ul})

42 /73

Part |l

Back Again (to NP)

43/73

Why back again to NP?

e Fact: There are many hard examples for resolution and CDCL
— One example are pigeonhole formulas (PHP) (more later)

4473

Why back again to NP?

e Fact: There are many hard examples for resolution and CDCL
— One example are pigeonhole formulas (PHP) (more later)

e What we have been looking at?

— Reduce problems to one concrete problem, i.e. Horn MaxSAT
— Develop fast algorithms for Horn MaxSAT

» Use IHSes, MHSes, MUSes, etc.

4473

Why back again to NP?

e Fact: There are many hard examples for resolution and CDCL
— One example are pigeonhole formulas (PHP) (more later)

e What we have been looking at?

— Reduce problems to one concrete problem, i.e. Horn MaxSAT
— Develop fast algorithms for Horn MaxSAT

» Use IHSes, MHSes, MUSes, etc.

e What we found out?
— Reductions are remarkably effective for PHP in practice

44/73

Why back again to NP?

e Fact: There are many hard examples for resolution and CDCL
— One example are pigeonhole formulas (PHP) (more later)

e What we have been looking at?

— Reduce problems to one concrete problem, i.e. Horn MaxSAT
— Develop fast algorithms for Horn MaxSAT

» Use IHSes, MHSes, MUSes, etc.
e What we found out?

— Reductions are remarkably effective for PHP in practice
— There exist polynomial time proofs that PHP is unsatisfiable !

44/73

Why back again to NP?

e Fact: There are many hard examples for resolution and CDCL
— One example are pigeonhole formulas (PHP) (more later)

e What we have been looking at?

— Reduce problems to one concrete problem, i.e. Horn MaxSAT
— Develop fast algorithms for Horn MaxSAT

» Use IHSes, MHSes, MUSes, etc.

e \What we found out?

— Reductions are remarkably effective for PHP in practice
— There exist polynomial time proofs that PHP is unsatisfiable !

» Using core-guided algorithms; and
» Using MaxSAT resolution

44/73

Why back again to NP?

e Fact: There are many hard examples for resolution and CDCL
— One example are pigeonhole formulas (PHP) (more later)

e What we have been looking at?

— Reduce problems to one concrete problem, i.e. Horn MaxSAT
— Develop fast algorithms for Horn MaxSAT

» Use IHSes, MHSes, MUSes, etc.

e \What we found out?

— Reductions are remarkably effective for PHP in practice
— There exist polynomial time proofs that PHP is unsatisfiable !

» Using core-guided algorithms; and
» Using MaxSAT resolution

— But, core-guided algorithms also use CDCL !
— Also, MHS MaxSAT algorithms are effective on hard problems

44/73

Plan for part B

1. Recap PHP

2. Reduce SAT to Horn MaxSAT
— Also, what happens to PHP?

3. Develop polynomial time proofs of the unsatisfiability of PHP

— Using an MSU3-like MaxSAT algorithm
— Using MaxSAT resolution

4. Experimental results
— PHP, Urquhart, and combinations thereof

5. Detailed description available from:
https://arxiv.org/abs/1705.01477

45 /73

https://arxiv.org/abs/1705.01477

Outline

Pigeonhole Formulas

46 /73

Pigeonhole formulas |

e Pigeonhole principle:
— Typical: if m+ 1 pigeons are distributed by m holes, then at least
one hole contains more than one pigeon

— Alternative: there exists no injective function mapping from
{1,2,...,m+1} to {1,2,...,m}, for m > 1

47 /73

Pigeonhole formulas |

e Pigeonhole principle:
— Typical: if m+ 1 pigeons are distributed by m holes, then at least
one hole contains more than one pigeon

— Alternative: there exists no injective function mapping from
{1,2,...,m+1} to {1,2,...,m}, for m > 1

e Propositional formulation:

Does there exist assignment such that the m + 1 pigeons can
be placed into m holes?

47 /73

Pigeonhole formulas |

e Pigeonhole principle:
— Typical: if m+ 1 pigeons are distributed by m holes, then at least
one hole contains more than one pigeon

— Alternative: there exists no injective function mapping from
{1,2,...,m+1} to {1,2,...,m}, for m > 1

e Propositional formulation:

Does there exist assignment such that the m + 1 pigeons can
be placed into m holes?

e Encoding: x; variables

(-0
()-(7)

m+1 | pigeons
m holes

47 /73

Pigeonhole formulas Il — propositional encoding PHP™ !

e Variables:
- x; = 1 iff the i*h pigeon is placed in the j'" hole, 1 </ < m+1,
1<;<m

48 /73

Pigeonhole formulas Il — propositional encoding PHP™ !

e Variables:
— x; = 1 iff the /*" pigeon is placed in the ;™ hole, 1 </ < m+ 1,
1<;<m

e Constraints:

— Each pigeon must be placed in at least one hole, and each hole
must not have more than one pigeon

/\:’:{1 AtLeastl(xi1, ..., Xim) A /\jm:1 AtMost1(xyj, . . . Xm+1;)

48 /73

Pigeonhole formulas Il — propositional encoding PHP™ !

e Variables:
— x; = 1 iff the /*" pigeon is placed in the ;™ hole, 1 </ < m+ 1,
1<;<m

e Constraints:

— Each pigeon must be placed in at least one hole, and each hole
must not have more than one pigeon

/\:’:{1 AtLeastl(xi1, ..., Xim) A /\jm:1 AtMost1(xyj, . . . Xm+1;)

e Example encoding, with pairwise encoding for AtMost1 constraint:

Constraint Clause(s)
/\;’”jllAtLeastl(x,-l, L. ,X,'m) (X,'1 V...V X,'m)
/\jilAtMOStl(XU, ... 7X,,,Jr1‘,') /\:":21 /\;;11 (—\X,j Vv —‘ij)

48 /73

Outline

Reduction: SAT to Horn MaxSAT

49 /73

Reducing SAT to Horn MaxSAT

e Formula F with variables X = {x1,...,x:}

50/ 73

Reducing SAT to Horn MaxSAT

e Formula F with variables X = {x1,...,x:}
e Replace each original variable x; € X by n; and p;, s.t.
- n;:lifo,—:O
- p,'ZlifFX,':l
— Add (hard Horn) constraint (—n; V —p;) <« set of clauses P

50/73

Reducing SAT to Horn MaxSAT

e Formula F with variables X = {x1,...,x:}
e Replace each original variable x; € X by n; and p;, s.t.
- n,‘:]_iﬂ:X,':O
- p,'ZlifFX,':l
— Add (hard Horn) constraint (—n; V —p;) <« set of clauses P

e Translate each clause ¢, € F into (hard Horn) clause ¢, € Fy:
— Literal x; converted to —n;
— Literal —x; converted to —p;
— Resulting clause is goal clause < (can do better)

50/73

Reducing SAT to Horn MaxSAT

e Formula F with variables X = {x1,...,x:}
e Replace each original variable x; € X by n; and p;, s.t.
- n,‘:]_iﬂ:X,':O
- p,'ZlifFX,':l
— Add (hard Horn) constraint (—n; V —p;) <« set of clauses P

Translate each clause ¢, € F into (hard Horn) clause ¢, € Fp:
— Literal x; converted to —n;
— Literal —x; converted to —p;
— Resulting clause is goal clause < (can do better)

Soft clauses: & = {(m),...,(ne),(p1),...,(pt)}
Horn MaxSAT formula: (Fy UP,S)

50/73

Reducing SAT to Horn MaxSAT

e Formula F with variables X = {x1,...,x:}
e Replace each original variable x; € X by n; and p;, s.t.
- n;:lifo,—:O
- p,'ZlifFX,':l
— Add (hard Horn) constraint (—n; V —p;) <« set of clauses P

Translate each clause ¢, € F into (hard Horn) clause ¢, € Fp:
— Literal x; converted to —n;
— Literal —x; converted to —p;
— Resulting clause is goal clause < (can do better)

Soft clauses: & = {(m),...,(ne),(p1),...,(pt)}
Horn MaxSAT formula: (Fy UP,S)

Claim:

F is SAT iff Horn MaxSAT formula has solution with cost < ¢t

— There exists assignment that satisfies hard clauses Fy and at least t
soft clauses from S, i.e. cost < t

— Due to P clauses, cost > t; thus F is SAT iff cost = t

50/73

An example

e CNF formula:
F = (Xl V —xo V X3) AN (X2 V X3) VAN (ﬁXl V —\X3)

51/73

An example

e CNF formula:
F = (Xl V —xo V X3) AN (X2 V X3) VAN (ﬁXl V ﬁX3)

e New variables: {n1, p1, n, p2, n3, p3}

e Soft clauses: S = {(n), (p1), (n2), (p2),(n3),(p3)}

51/73

An example

CNF formula:
F = (Xl V —xo V X3) AN (X2 V X3) VAN (ﬁXl V ﬁX3)

New variables: {n1, p1, n2, p2, n3, p3}

Soft clauses: S = {(n1), (p1), (n2), (p2),(n3), (p3)}

Clauses in P:
P £ (= V-p1) A(mm2 V op2) A (mns V —ps)

51/73

An example

CNF formula:
F = (X1 V —xo V X3) AN (X2 V X3) VAN (ﬁXl V ﬁX3)

New variables: {n1, p1, n2, p2, n3, p3}

Soft clauses: S = {(m),(p1),(m2),(p2),(n3),(p3)}

Clauses in P:
P £ (= V-p1) A(mm2 V op2) A (mns V —ps)

Original clauses converted to:
Fu £ (-m vV -p2Vong) A(=nmpV =nz) A(—pr V ops)

51/73

An example

CNF formula:
F = (Xl V —xo V X3) AN (X2 V X3) VAN (ﬁXl V ﬁX3)

New variables: {n1, p1, n2, p2, n3, p3}

Soft clauses: S = {(n1), (p1), (n2), (p2),(n3), (p3)}

Clauses in P:
P £ (= V-p1) A(mm2 V op2) A (mns V —ps)

Original clauses converted to:
Fu £ (-m vV -p2Vong) A(=nmpV =nz) A(—pr V ops)

Resulting formula: (Fy UP,S)

F is satisfiable iff Horn MaxSAT formula has a solution with cost 3

51/73

PHP as Horn MaxSAT

e New variables nj; and pj;, for each xj;, 1 </i<m+1,1<j<m

e The soft clauses S, with |S| = 2m(m + 1), are given by

{ (m1)y--s(mm)y-- oy (Mmt11), -+, (Nmt1m),
(P11), ceey (P1m), ceey (.Dm+1 1), ceey (Pm+1 m) }

52/73

PHP as Horn MaxSAT

e New variables nj; and pj;, for each xj;, 1 </i<m+1,1<j<m

e The soft clauses S, with |S| = 2m(m + 1), are given by

{ (m1)y--s(mm)y-- oy (Mmt11), -+, (Nmt1m),
(P11), ceey (P1m), ceey (.Dm+1 1), ceey (Pm+1 m) }

e Clauses in P: P = {(—-n;V —pj)|1 <i<m+1,1<j<m}

52/73

PHP as Horn MaxSAT

e New variables nj; and pj;, for each xj;, 1 </i<m+1,1<j<m

The soft clauses S, with |S| = 2m(m + 1), are given by

{ (nll), veey (nlm), ceny (nm+1 1), ceey (nm+1 m),
(P11), ceey (le), ceey (Pm+1 1), ceey (Pm+1 m) }

Clauses in P: P = {(—n;jV-pj)|1<i<m+1,1<j<m}

AtLeastl constraints encoded as £;,1 <i<m+1

AtMost1 constraints encoded as M;,1 < j < m

52/73

PHP as Horn MaxSAT

e New variables nj; and pj;, for each xj;, 1 </i<m+1,1<j<m

The soft clauses S, with |S| = 2m(m + 1), are given by

{ (nll), veey (nlm), ceny (nm+1 1), ceey (nm+1 m),
(P11)7 ceey (le), ceey (Pm+1 1), ceey (Pm+1 m) }

Clauses in P: P = {(—n;jV-pj)|1<i<m+1,1<j<m}

AtLeastl constraints encoded as £;,1 <i<m+1

AtMost1 constraints encoded as M;,1 < j < m
Full reduction of PHP to Horn MaxSAT
H,S) = <A§’;+11£,- ANPLM; AP, 8>

J

52/73

PHP as Horn MaxSAT

e New variables nj; and pj;, for each xj;, 1 </i<m+1,1<j<m

e The soft clauses S, with |S| = 2m(m + 1), are given by

{ (m1)y--s(mm)y-- oy (Mmt11), -+, (Nmt1m),
(P11), ceey (P1m), ceey (.Dm+1 1), ceey (Pm+1 m) }

e Clauses in P: P = {(—-n;V —pj)|1 <i<m+1,1<j<m}
e Atleastl constraints encoded as £;,1 </i<m+1
e AtMostl constraints encoded as M;,1 < j < m
e Full reduction of PHP to Horn MaxSAT
H,S) = <A,f’;+11£,- ANPLM; AP, 8>

j
e No more than m(m + 1) clauses can be satisfied, due to P
e PHP™ is satisfiable iff there exists an assignment that satisfies

the hard clauses H and m(m + 1) soft clauses from S s

PHP as Horn MaxSAT Il

e Clauses in each £; and in each M, with pairwise encoding

Original Constraint Encoded To Clauses
/\;’zlAtLeastl(x,-l, .. 7X,'m) Li (ﬁn,-l V...V ﬁn,-,,,)
NjZ1AtMost1(xyj, . . ., Xm+1,5) M, NS NZL (2py V —ps)

53 /73

PHP as Horn MaxSAT Il

e Clauses in each £; and in each M, with pairwise encoding

Original Constraint Encoded To Clauses
/\;’SlAtLeastl(x,-l, .. 7X,'m) Li (ﬁn,-l V...V ﬁn,-,,,)
NjZ1AtMost1(xyj, . . ., Xm+1,5) M, NS NZL (2py V —ps)

e Note: constraints with key structural properties:

Constraint Variables
Li (= V...V onim)
Ly (=nk1 V.oV 2nkm)
M AT A (b Ve
M /\T:Jr; /\;;11 (=pr V —psi)

— Variables in each £; disjoint from any other £, and M, k # i
— Variables in each M; disjoint from any other M, [# j

53 /73

Outline

Polynomial Time Proofs

54 /73

Main claims

Core-guided MaxSAT produces a lower bound on the number of
falsified clauses of >m(m + 1) + 1 in polynomial time

55 /73

Main claims

Core-guided MaxSAT produces a lower bound on the number of
falsified clauses of >m(m + 1) + 1 in polynomial time

MaxSAT resolution produces a lower bound on the number of falsified
clauses of >m(m + 1) + 1 in polynomial time

55 /73

Main claims

Core-guided MaxSAT produces a lower bound on the number of
falsified clauses of >m(m + 1) + 1 in polynomial time

Claim 2

MaxSAT resolution produces a lower bound on the number of falsified
clauses of >m(m + 1) + 1 in polynomial time

Corollary

Horn MaxSAT encoding enables polynomial time proofs of the
unsatisfiability of PHP instances, using CDCL SAT solvers

55 /73

Proof of claim 1 — outline

1. Assume MSU3 MaxSAT algorithm

— Note: Suffices to analyze disjoint sets separately

56 /73

Proof of claim 1 — outline

1. Assume MSU3 MaxSAT algorithm

— Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each £; and each M;
— Each constraint disjoint from the others (but not from P)

56 /73

Proof of claim 1 — outline

1. Assume MSU3 MaxSAT algorithm

— Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each £; and each M;
— Each constraint disjoint from the others (but not from P)

3. Derive large enough lower bound on # of falsified clauses:

Constr. type # falsified cls # constr In total
1L 1 i=1,...,m+1 m+1
M; m j=1,...,m m-m

m(m+1)+1

56 /73

Proof of claim 1 — outline

1. Assume MSU3 MaxSAT algorithm

— Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each £; and each M;
— Each constraint disjoint from the others (but not from P)

3. Derive large enough lower bound on # of falsified clauses:

Constr. type # falsified cls # constr In total
1L 1 i=1,...,m+1 m+1
M; m j=1,...,m m-m

m(m+1)+1

4. Each increase in the value of the lower bound obtained by unit
propagation (UP)
— In total: polynomial number of (linear time) UP runs

56 /73

Proof of claim 1 — unit propagation steps |

Updated LB
Constr Hard cls Soft cls Relaxed clauses AtMostk incr
constr
sy Voni1),
L; (=niy V..oV =nim) | (i), - -, (Nim) g é | Slll)n s <1 1
nj Vv pyj), 2
M —py; V Apo; i), . (! -J o<1 1
j (P1j PQJ) (PIJ) (PZJ) (f2j \/P2j) Zlfl =
(=pyj V —psj),
(P2 V —p3j), s
M; (rj v py), (p3)) (13 V p3j) P <2 1
(13 V).
> <1
(=P VPme1)s - - -
(ﬁpmj Vv ﬁpm+1j)v]
M; (rj V) (Pm+1j) (rmt1jVPmiy) | 2y m<m |1
(rmj Vv ij)y
Yt <m—1

57/73

Proof of claim 1 — unit propagation steps ||

Clauses Unit Propagation

(pk+1j) Pry1j =1

(=p1j V= Pk11j)s -+ (CPK V oPk41)) | P =--- = pKi =0

(rleplj),...,(rkj\/pkj) rlj:...:rkal

Zj;lrljfkfl (Zf:lrljgk_l)'_lj—
o Key points:

— For each £;, UP raises LB by 1

— For each M;, UP raises LB by m

— In total, UP raises LB by m(m+1) + 1
— PHP7*! is unsatisfiable

58 /73

Proof of claim 2 — recap MaxSAT resolution

Clauses: (x VA, u) and (—x V B, w)

m = min(u, w)

vow=(u==T)?T:u—w, withu>w

Example MaxSAT resolution steps:

‘ Clause 1 ‘ Clause 2 ‘ Derived Clauses ‘
(AVB,m), (xVA uem), (-xVB,wem),
(xVAu) | (~xVB,w) (x VAV =B, m), (-xV =AV B, m)
(X\/Av]-) (_‘XvT) (A71)v (_'XvT)v (“X\/‘!A./].)

59/ 73

Proof of claim 2 — outline

Follow ideas used in previous proof

e Mimic unit propagation steps as MaxSAT resolution steps

Each increase in LB corresponds to deriving one empty clause

In total: polynomial number of steps, each running in polynomial
time

60 /73

Proof of claim 2 — key steps |

‘ Constraint ‘ Clauses ‘ Resulting clause(s)
(=01 V.oV =i, T, it it A
i Y (=02 V...V 2nj,, 1
Lj (ni1,1) L(,,n,%,,,,,,,fl,,,,),\
(mni2 VooV i, 1), | rp oo oo g 1
5 2 2 i(—=niz V \V = Njm, 1 L
Li (ni2,1) L(,,Il’é,,,,,,,ﬁ’,"l;,),\
/2 (2 1im, 1), 1.1 ...
(nimw 1) ()
—-p1; V i T s [Pttt 3
M; ey o) (=p2j; 1), (=py V =p2;, T), (P V p2js 1)
(p117 1) ””””””
M (e L, @D
’ Pty | =
" (~pyj V 3, T), (P2 Y 2Py 1)y ey V ey, T,
' (Poj VP 1) |y VoV e 1), (P Y Py V P 1),
—py; V =p3;, T) FProooo l
M, (op; S ((=p3j; 1)y (2p2j Vo —psj, T
/ (p2j V —p3j, 1) (G Dy oy i T)
M_ (p3j7] J_’].
: (py. 1) —

61/73

Proof of claim 2 — key steps Il

‘ Constraint ‘ Clauses ‘ Resulting clause(s)

(ﬁpl‘Vﬁperl‘ T) Fm T T T T T T T T T T T T T T T 1
M; / AR P2y Pmj V —Pmt1)y 1)1,
J (p1j V.-V Pmjy1) L(,,J,,,,fnl,,,,f"f,{,,)i

(—P2j V = Pmi1js T)s

. (g V-V pmj ¥ {(P3j Py V 2P 1)
~Pm+1j,1)
(omt VP, T, —— ‘
M; y L/ ’ 1=, .71".“
! (Pmj V ~Pm+1),1) [2Pm+1j, 1)
M; (pm+ljs 5 11
’ (=Pm+1j,1) (s)
e Key points:

— For each L;, derive 1 empty clause
— For each M, derive m empty clauses
— In total, derive m(m + 1) + 1 empty clauses
— PHP™*! is unsatisfiable
62 /73

Outline

Experimental Results

63/73

Experimental setup

e Instances:
— PHP-pw (46), PHP-sc (46), Urquhart (84), Comb (96)

e Solvers:

SAT SAT+ IHS MaxSAT CG MaxSAT MRes MIP oPB BDD

minisat glucose Igl crypto maxhs Imhs mscg wbo wpm3 eva Ip cc satdj* zres

64 /73

Results on PHP instances: pw vs. sc

10°

1
1
1
|
102 §----+ 10
| 4
1
I Lo
I} o —o— Ip-cnf

10 T 10
. 1 —~— Ip-wenf =
2 19 oo 2
e UZ }W/ ‘ —— maxhs T
g] 3 007 2
S g0 fu T il —— Imhs £
=} 2
5 ?"&M me | g
e eva
Igl 014 —o— Ip-cnf —0— glucose
—0— Imhs-nes —4— Ip-wenf —¥— lgl-nocard
5 zres —— maxhs o gl
—#— glucose) —+— Imhs —A- zres
—&~ lgl-nocard 10~ mscg ~0- cc-enf
—0- cc-cnf —#— Imhs-nes —+- cc-opb
—+= cc-opb eva
t T 1073
20 30 40 50 60 0 10 20 30 40 50
instances instances

65/73

Effect of P clauses

103 4
102 4
10! 4
2
g —o— mscg (no P)
S 1004 —~— maxhs H
6 —>— Imhs
—+— wbo (no P)
10-!4 mscg H
—«— eva(noP)
eva
1024 —0— Imhs-nes (no P) |
—— Imhs-nes
—>— wbo
1073 y

80 100

instances

66 /73

Effect of P clauses on mscg and wbo

104 = x 10*
1800 seé. tmeout | 1800 seé. timeout
103 i+ 103
10 10
10! 10!
=% =%}
= =
100 100 -
107!
H H
1072 4 ;
g 2
2 2
107 - 2 2
103 10 107! 10° 10! 10* 10° 104 107! 10° 10! 10% 10° 104
PHP-nop PHP-nop

67/73

Results on Urquhart & combined instances

[]1 ; s [
10 I H f ﬁl 10° [Mu T
102 J ;&, f M
J . J M
1 / Tz ﬁx
Z 10 s
N z
=) S 10! oak
& 1 &
10° %
—O— zres mscg
FJ —— maxhs —0— lgl-nogauss 10
10! —*— Imhs —%— glucose zres, —¥ mscg
—+— Imhs-nes > eva —4— Imhs-nes —— gl o eva
lgl ~#- ce-cnf —%— maxhs Ip-wenf —4- ce-cnf
—#— Ip-wenf —+— lglnocard —0— glucose
102 10!
0 10 20 30 40 50 60 70 80 90 0 20 40 60 80 100

instances instances

68/73

More detail in arXiv report

“On Tackling the Limits of Resolution in SAT Solving”
A. Ignatiev, A. Morgado, and J. Marques-Silva
https://arxiv.org/abs/1705.01477

69 /73

https://arxiv.org/abs/1705.01477

Part Il

Wrap Up

70/73

Conclusions

e Covered some examples of problem solving using SAT oracles
— MaxSAT solving
2QBF solving

° , many more examples:

MUS & MCS extraction

MUS & MCS enumeration

— Prime compilation

Implicit hitting sets

— Quantification: decision, QMaxSAT, abduction, ...
Smallest MUSes

Approximate model counting

Also: backbones; autarkies/lean kernels, ...

Also: (many) practical applications

71

73

Conclusions

e Covered some examples of problem solving using SAT oracles

— MaxSAT solving
— 2QBF solving

e But, many more examples:
— MUS & MCS extraction
MUS & MCS enumeration
— Prime compilation
Implicit hitting sets
— Quantification: decision, QMaxSAT, abduction, ...
Smallest MUSes
Approximate model counting
Also: backbones; autarkies/lean kernels, ...
Also: (many) practical applications

e (Horn) MaxSAT solvers can solve (in polynomial time) hard
instances for resolution
— If equipped with the right reduction

71/73

Some research topics

e Beyond NP:
— Query complexity
Enumeration
Quantification
Implicit hitting sets & duality

72/73

Some research topics

e Beyond NP:

Query complexity
Enumeration

Quantification

Implicit hitting sets & duality

e Applications:

Diagnosis

Axiom pinpointing
Planning
Reachability
Synthesis
Networking
Configuration
Argumentation

72/73

Some research topics

e Beyond NP:
— Query complexity
Enumeration
— Quantification
— Implicit hitting sets & duality

e Applications:
— Diagnosis
— Axiom pinpointing
— Planning
— Reachability
— Synthesis
— Networking
— Configuration
— Argumentation

e Also, where to go with Horn MaxSAT?

72/73

Thank You

73/73

	From NP to Beyond NP
	Background
	MaxSAT Solving
	Iterative SAT Solving
	Core-Guided Algorithms
	Minimum Hitting Sets

	2QBF Solving

	Back Again (to NP)
	Pigeonhole Formulas
	Reduction: SAT to Horn MaxSAT
	Polynomial Time Proofs
	Experimental Results

	Wrap Up

