
Computing with Oracles

From NP to Beyond NP and Back Again

Joao Marques-Silva

University of Lisbon, Portugal

Beyond NP Meeting

Paris, France

10 May 2017

1 / 73

The SAT disruption

• SAT is NP-complete [Cook’71]

– But, CDCL SAT solving is a success story of Computer Science
– Hundreds (thousands?) of practical applications

2 / 73

The SAT disruption

• SAT is NP-complete [Cook’71]

– But, CDCL SAT solving is a success story of Computer Science

– Hundreds (thousands?) of practical applications

2 / 73

The SAT disruption

• SAT is NP-complete [Cook’71]

– But, CDCL SAT solving is a success story of Computer Science
– Hundreds (thousands?) of practical applications

2 / 73

SAT solver improvement I
[Source: Le Berre 2013]

3 / 73

SAT solver improvement II
[Source: Simon 2015]

��

����

�����

�����

�����

�����

��� ��� ��� ���� ���� ���� ���� ���� ���� ����

�
�
�
��
�
��
�
���
�
�
�

�
���

�
�
��
�
�
�
�
�
�
�

���

�����������������
���������������

���������������������
��������������

���������������
��������������

��������������������
��������������

�����������������������
��������������������������

4 / 73

SAT is the engines’ engine

Engines using
SAT engines

Boolean

QBF

MaxSAT

PBO

#SAT

...

FOL SMT

Model
finding

Theorem
proving

...

Other

ASP

LCG

CSP

...

5 / 73

SAT is ubiquitous in problem solving

Problem solving
with SAT

Embeddings

PBO
B&B

Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

MaxSAT

MCS

MUS

Min. Mod-
els

Backbones

Enumeration

CEGAR
SMT

CEGAR
QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

6 / 73

SAT can make the difference – propositional abduction

10−3 10−2 10−1 100 101 102 103 104

Hyper?

10−3

10−2

10−1

100

101

102

103

104

A
bH

S+

1800 sec. timeout

18
00

se
c.

tim
eo

ut

• Topic(s): quantified optimization [ECAI’16]

• Instances: KR16 propositional abduction

7 / 73

SAT can make the difference – axiom pinpointing

10−2 10−1 100 101 102 103 104

EL2MUS

10−2

10−1

100

101

102

103

104

E
L

+
SA

T

3600 sec. timeout

36
00

se
c.

tim
eo

ut

• Topic(s): MUS enumeration; MCSes; implicit hitting sets [SAT’15]

• Instances: EL+ medical ontologies

8 / 73

Part I

From NP to Beyond NP

9 / 73

Outline – part A

Background

MaxSAT Solving

2QBF Solving

10 / 73

Outline

Background

MaxSAT Solving

2QBF Solving

11 / 73

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

12 / 73

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

12 / 73

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution

Function Problems

All solutions Enumeration Problems

12 / 73

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

12 / 73

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions

Enumeration Problems

12 / 73

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

12 / 73

... and beyond NP – decision and function problems

∆p
0 = Σp

0 = P = Πp
0 = ∆p

1

NP = Σp
1 Πp

1 = coNP

PNP = ∆p
2

Σp
2 Πp

2

∆p
3

Σp
3 Πp

3

...

F∆p
0 = FΣp

0 = FP = FΠp
0 = F∆p

1

FNP = FΣp
1 FΠp

1 = coFNP

FPNP = F∆p
2

FΣp
2 FΠp

2

F∆p
3

FΣp
3 FΠp

3

...

13 / 73

Oracle-based problem solving – ideal scenario

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

14 / 73

Oracle-based problem solving – in some settings

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

15 / 73

Many problems to solve – within FPNP

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

16 / 73

Many problems to solve – within FPNP

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

Function Problems on Propositional Formulas

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...

16 / 73

Many problems to solve – within FPNP

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

Function Problems on Propositional Formulas

Optimization Problems

Minimal Sets

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...

16 / 73

Selection of topics

Problem solving
with SAT

Embeddings

PBO
B&B

Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

MaxSAT

MCS

MUS

Min. Mod-
els

Backbones

Enumeration

CEGAR
SMT

CEGAR
QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

MaxSAT solving2QBF solving

17 / 73

Outline

Background

MaxSAT Solving

2QBF Solving

18 / 73

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest cost MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications

19 / 73

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest cost MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications

19 / 73

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications

19 / 73

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications

19 / 73

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest cost MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications

19 / 73

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest cost MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications

19 / 73

The MaxSAT (r)evolution – plain industrial instances

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Open-WBO-In
pmifumax-13

WPM1-11
wbo-1.4a-10

wbo1.6-cnf-12

Source: [MaxSAT 2014 organizers]

48.1% more

instances solved!

20 / 73

The MaxSAT (r)evolution – plain industrial instances

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Open-WBO-In
pmifumax-13

WPM1-11
wbo-1.4a-10

wbo1.6-cnf-12

Source: [MaxSAT 2014 organizers]

48.1% more

instances solved!
20 / 73

The MaxSAT (r)evolution – partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Open-WBO-In
QMaxSAT2-mt-13

QMaxSat-g2-12
QMaxSat0.4-11

QMaxSat-10

Source: [MaxSAT 2014 organizers]

71.5% more

instances solved!

21 / 73

The MaxSAT (r)evolution – partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Open-WBO-In
QMaxSAT2-mt-13

QMaxSat-g2-12
QMaxSat0.4-11

QMaxSat-10

Source: [MaxSAT 2014 organizers]

71.5% more

instances solved!
21 / 73

The MaxSAT (r)evolution – weighted partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Eva500a
WPM1-2013

WPM1-11
pwbo2.1-12

wbo-1.4a-wcnf-10

Source: [MaxSAT 2014 organizers]

51.5% more

instances solved!

22 / 73

The MaxSAT (r)evolution – weighted partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Eva500a
WPM1-2013

WPM1-11
pwbo2.1-12

wbo-1.4a-wcnf-10

Source: [MaxSAT 2014 organizers]

51.5% more

instances solved!
22 / 73

Many MaxSAT approaches

MaxSAT
Algorithms

Branch
& Bound

Iterative

Core
Guided

Iterative
MHS

Model
Guided

No unit prop;
No cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided approaches are
the most effective [MaxSAT14]

23 / 73

Many MaxSAT approaches

MaxSAT
Algorithms

Branch
& Bound

Iterative

Core
Guided

Iterative
MHS

Model
Guided

No unit prop;
No cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided approaches are
the most effective [MaxSAT14]

23 / 73

Outline

Background

MaxSAT Solving
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

2QBF Solving

24 / 73

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Example CNF formula

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

25 / 73

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Relax all clauses; Set UB = 12 + 1

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

25 / 73

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Formula is SAT; E.g. all xi = 0 and r1 = r7 = r9 = 1 (i.e. cost = 3)

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

25 / 73

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 2

Refine UB = 3

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

25 / 73

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 2

Formula is SAT; E.g. x1 = x2 = 1; x3 = ... = x8 = 0 and r4 = r9 = 1
(i.e. cost = 2)

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

25 / 73

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

Refine UB = 2

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

25 / 73

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

Formula is UNSAT; terminate

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

25 / 73

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

25 / 73

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

25 / 73

Outline

Background

MaxSAT Solving
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

2QBF Solving

26 / 73

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

27 / 73

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Formula is UNSAT; OPT ≤ |ϕ| − 1; Get unsat core

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

27 / 73

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6∑6
i=1 ri ≤ 1

Add relaxation variables and AtMostk , k = 1, constraint

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

27 / 73

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6∑6
i=1 ri ≤ 1

Formula is (again) UNSAT; OPT ≤ |ϕ| − 2; Get unsat core

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

27 / 73

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

Add new relaxation variables and update AtMostk , k=2, constraint

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

27 / 73

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

Instance is now SAT

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

27 / 73

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

27 / 73

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

27 / 73

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

27 / 73

Outline

Background

MaxSAT Solving
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

2QBF Solving

28 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K:

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅
• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅
• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅
• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: ∅
• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}. Update K

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K:

• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}
• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}
• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}
• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1}
• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}. Update K

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K:

• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}
• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}
• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}
• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c1, c9}
• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}. Update K

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K:

• SAT(F \ {c4, c9})?

• Terminate & return 2

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}

• SAT(F \ {c4, c9})?

• Terminate & return 2

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}
• SAT(F \ {c4, c9})?

• Terminate & return 2

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}
• SAT(F \ {c4, c9})? Yes

• Terminate & return 2

29 / 73

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}
• SAT(F \ {c4, c9})? Yes

• Terminate & return 2

29 / 73

MaxSAT solving with SAT oracles

• A sample of recent algorithms:

Algorithm # Oracle Queries Reference

Linear search SU Exponential*** [e.g. LBP10]

Binary search Linear* [e.g. FM06]

FM/WMSU1/WPM1 Exponential** [FM06,MSM08,MMSP09,ABL09a,ABGL12]

WPM2 Exponential** [ABL10,ABGL13]

Bin-Core-Dis Linear [HMMS11,MHMS12]

Iterative MHS Exponential [DB11,DB13a,DB13b]

* O(logm) queries with SAT oracle, for (partial) unweighted MaxSAT

** Weighted case; depends on computed cores
*** On # bits of problem instance (due to weights)

• But also additional recent work:
– Progression
– Soft cardinality constraints (OLL)
– MaxSAT resolution
– ...

30 / 73

Outline

Background

MaxSAT Solving

2QBF Solving

31 / 73

Abstraction refinement for QBF

• Many approaches proposed for solving QBF [...]

• Abstraction-refinement proposed for 2QBF in 2011 [JMS11]

• Extended to QBF in 2012 [JKMSC12]

• Significant impact in QBF competitions

• Influenced research in QBF solvers

– E.g. see conference papers in 2015/2016

• Ack: Slides adapted from M. Janota SAT’11 talk

32 / 73

Problem definition

Given: ∃X∀Y .φ, where φ is a propositional formula

Question: Is there assignment ν to X variables such that ∀Y .φ[X/ν]?

Example

∃x1, x2 ∀y1, y2. (x1 → y1) ∧ (x2→y2)

solution: x1 = 0, x2 = 0

A simple algorithm

• While true
– Pick fresh assignment ν to X variables
– Check with SAT solver whether ∀Y .φ[X/ν] holds

I How? Check SAT(¬φ[X/ν]) is unsat

33 / 73

Problem definition

Given: ∃X∀Y .φ, where φ is a propositional formula

Question: Is there assignment ν to X variables such that ∀Y .φ[X/ν]?

Example

∃x1, x2 ∀y1, y2. (x1 → y1) ∧ (x2→y2)

solution: x1 = 0, x2 = 0

A simple algorithm

• While true
– Pick fresh assignment ν to X variables
– Check with SAT solver whether ∀Y .φ[X/ν] holds

I How? Check SAT(¬φ[X/ν]) is unsat

33 / 73

Problem definition

Given: ∃X∀Y .φ, where φ is a propositional formula

Question: Is there assignment ν to X variables such that ∀Y .φ[X/ν]?

Example

∃x1, x2 ∀y1, y2. (x1 → y1) ∧ (x2→y2)

solution: x1 = 0, x2 = 0

A simple algorithm

• While true
– Pick fresh assignment ν to X variables
– Check with SAT solver whether ∀Y .φ[X/ν] holds

I How? Check SAT(¬φ[X/ν]) is unsat

33 / 73

Problem definition

Given: ∃X∀Y .φ, where φ is a propositional formula

Question: Is there assignment ν to X variables such that ∀Y .φ[X/ν]?

Example

∃x1, x2 ∀y1, y2. (x1 → y1) ∧ (x2→y2)

solution: x1 = 0, x2 = 0

A simple algorithm

• While true
– Pick fresh assignment ν to X variables
– Check with SAT solver whether ∀Y .φ[X/ν] holds

I How?

Check SAT(¬φ[X/ν]) is unsat

33 / 73

Problem definition

Given: ∃X∀Y .φ, where φ is a propositional formula

Question: Is there assignment ν to X variables such that ∀Y .φ[X/ν]?

Example

∃x1, x2 ∀y1, y2. (x1 → y1) ∧ (x2→y2)

solution: x1 = 0, x2 = 0

A simple algorithm

• While true
– Pick fresh assignment ν to X variables
– Check with SAT solver whether ∀Y .φ[X/ν] holds

I How? Check SAT(¬φ[X/ν]) is unsat

33 / 73

Looking at assignments

Y

X

ξ

µ

34 / 73

Looking at assignments

Y

X

ξ

µ

1

34 / 73

Looking at assignments

Y

X

ξ

µ

11 0 . . .

. . .
0 . . .

. . .
1

34 / 73

Looking at assignments

Y

X

ξ

µ

11 0 . . .

. . .
0 . . .

. . .
1

ν 1 1 . . . 1 1 . . . 1

34 / 73

Looking at assignments

Y

X

ξ

µ

φ[Y /µ]

11 0 . . .

. . .
0 . . .

. . .
1

ν 1 1 . . . 1 1 . . . 1

34 / 73

Expanding into SAT

∃X∀Y . φ =⇒ SAT

 ∧
µ∈B|Y |

φ[Y /µ]

Example

∃x1, x2 ∀y1, y2. (x1 → y1) ∧ (x2→y2)

(x1 → 0) ∧ (x2 → 0)
∧ (x1 → 0) ∧ (x2 → 1)
∧ (x1 → 1) ∧ (x2 → 0)
∧ (x1 → 1) ∧ (x2 → 1)

35 / 73

Expanding into SAT

∃X∀Y . φ =⇒ SAT

 ∧
µ∈B|Y |

φ[Y /µ]

Example

∃x1, x2 ∀y1, y2. (x1 → y1) ∧ (x2→y2)

(x1 → 0) ∧ (x2 → 0)
∧ (x1 → 0) ∧ (x2 → 1)
∧ (x1 → 1) ∧ (x2 → 0)
∧ (x1 → 1) ∧ (x2 → 1)

35 / 73

Abstraction

• Consider only some set of assignments W ⊆ B|Y |∧
µ∈W

φ[Y /µ]

• A solution to the original problem is also a solution to the
abstraction ∧

µ∈B|Y |
φ[Y /µ] ⇒

∧
µ∈W

φ[Y /µ]

• But converse not true

– A solution to an abstraction is not necessarily a solution to the
original problem

36 / 73

Abstraction

• Consider only some set of assignments W ⊆ B|Y |∧
µ∈W

φ[Y /µ]

• A solution to the original problem is also a solution to the
abstraction ∧

µ∈B|Y |
φ[Y /µ] ⇒

∧
µ∈W

φ[Y /µ]

• But converse not true

– A solution to an abstraction is not necessarily a solution to the
original problem

36 / 73

Abstraction

• Consider only some set of assignments W ⊆ B|Y |∧
µ∈W

φ[Y /µ]

• A solution to the original problem is also a solution to the
abstraction ∧

µ∈B|Y |
φ[Y /µ] ⇒

∧
µ∈W

φ[Y /µ]

• But converse not true

– A solution to an abstraction is not necessarily a solution to the
original problem

36 / 73

CEGAR loop

input : ∃X∀Y .φ
output: (true, ν) if there exists ν s.t. ∀Yφ[X/ν],

(false, –) otherwise

W ← ∅
while true do

(outc1, ν)← SAT(
∧

µ∈W φ[Y /µ]) // find a candidate

if outc1 = false then
return (false,–) // no candidate found

end
if ν is a solution // solution check
then

return (true, ν)
else

Grow W // refinement

end
end

37 / 73

CEGAR loop

input : ∃X∀Y .φ
output: (true, ν) if there exists ν s.t. ∀Yφ[X/ν],

(false, –) otherwise

W ← ∅
while true do

(outc1, ν)← SAT(
∧

µ∈W φ[Y /µ]) // find a candidate

if outc1 = false then
return (false,–) // no candidate found

end
if ν is a solution // solution check
then

return (true, ν)
else

Grow W // refinement

end
end

37 / 73

Checking for a solution

An assignment ν is a solution to ∃X∀Y .φ iff

∀Y .φ[X/ν] iff UNSAT(¬φ[X/ν])

If SAT(¬φ[X/ν]) for some µ, then µ is a counterexample to ν

Example

∃x1, x2 ∀y1, y2. (x1 → y1) ∧ (x2→y2)

• candidate: x1 = 1, x2 = 1

• ¬φ[X/ν] , ¬y1 ∨ ¬y2

• counterexamples: y1 = 0, y2 = 0
y1 = 0, y2 = 1
y1 = 1, y2 = 0

38 / 73

Checking for a solution

An assignment ν is a solution to ∃X∀Y .φ iff

∀Y .φ[X/ν] iff UNSAT(¬φ[X/ν])

If SAT(¬φ[X/ν]) for some µ, then µ is a counterexample to ν

Example

∃x1, x2 ∀y1, y2. (x1 → y1) ∧ (x2→y2)

• candidate: x1 = 1, x2 = 1

• ¬φ[X/ν] , ¬y1 ∨ ¬y2

• counterexamples: y1 = 0, y2 = 0
y1 = 0, y2 = 1
y1 = 1, y2 = 0

38 / 73

Checking for a solution

An assignment ν is a solution to ∃X∀Y .φ iff

∀Y .φ[X/ν] iff UNSAT(¬φ[X/ν])

If SAT(¬φ[X/ν]) for some µ, then µ is a counterexample to ν

Example

∃x1, x2 ∀y1, y2. (x1 → y1) ∧ (x2→y2)

• candidate: x1 = 1, x2 = 1

• ¬φ[X/ν] , ¬y1 ∨ ¬y2

• counterexamples: y1 = 0, y2 = 0
y1 = 0, y2 = 1
y1 = 1, y2 = 0

38 / 73

Refinement

Y
X

ν 1 1 1 1.

39 / 73

Refinement

Y
X

ν

µ

1 1 1 0.

W

39 / 73

Refinement

Y
X

ν

µ

1 1 1 0.

W

W ′

39 / 73

2QBF algorithm

input : ∃X∀Y .φ
output: (true, ν) if there exists ν s.t. ∀Yφ[X/ν],

(false, –) otherwise

ω ← 1
while true do

(outc1, ν)← SAT(ω) // find a candidate solution

if outc1 = false then
return (false,–) // no candidate found

end

(outc2, µ)← SAT (¬φ[X/ν]) // find a counterexample

if outc2 = false then
return (true, ν) // candidate is a solution

end
ω ← ω ∧ φ[Y /µ] // refine

end

40 / 73

Properties of refinement

Y

X

ν

µ

1 1 1

ν1 1 1 1 0

ν2 1 1 1 0

0.

W

41 / 73

Properties of refinement

Y

X

νν

µ

1 1 1

ν1 1 1 1 0

ν2 1 1 1 0

0.

W

W ′

41 / 73

Properties of refinement

Y

X

νν

µ

1 1 1

ν1ν1 1 1 1 00

ν2ν2 1 1 1 00

0.

W

W ′

41 / 73

About refinement step

• No candidate for counterexample appears more than once

• Thus, upper bound on the number of iterations is:

min
{

2|X |, 2|Y |
}

• Heuristic: look for such counterexamples that are also
counterexamples to many other candidates, look for µ s.t.

¬φ[X/ν] ∧max
(
|{ν ′ | ¬φ[X/ν ′,Y /µ]}|

)

42 / 73

About refinement step

• No candidate for counterexample appears more than once

• Thus, upper bound on the number of iterations is:

min
{

2|X |, 2|Y |
}

• Heuristic: look for such counterexamples that are also
counterexamples to many other candidates, look for µ s.t.

¬φ[X/ν] ∧max
(
|{ν ′ | ¬φ[X/ν ′,Y /µ]}|

)

42 / 73

Part II

Back Again (to NP)

43 / 73

Why back again to NP?

• Fact: There are many hard examples for resolution and CDCL

– One example are pigeonhole formulas (PHP) (more later)

• What we have been looking at?

– Reduce problems to one concrete problem, i.e. Horn MaxSAT
– Develop fast algorithms for Horn MaxSAT

I Use IHSes, MHSes, MUSes, etc.

• What we found out?

– Reductions are remarkably effective for PHP in practice

– There exist polynomial time proofs that PHP is unsatisfiable !

I Using core-guided algorithms; and
I Using MaxSAT resolution

– But, core-guided algorithms also use CDCL !
– Also, MHS MaxSAT algorithms are effective on hard problems

44 / 73

Why back again to NP?

• Fact: There are many hard examples for resolution and CDCL

– One example are pigeonhole formulas (PHP) (more later)

• What we have been looking at?

– Reduce problems to one concrete problem, i.e. Horn MaxSAT
– Develop fast algorithms for Horn MaxSAT

I Use IHSes, MHSes, MUSes, etc.

• What we found out?

– Reductions are remarkably effective for PHP in practice

– There exist polynomial time proofs that PHP is unsatisfiable !

I Using core-guided algorithms; and
I Using MaxSAT resolution

– But, core-guided algorithms also use CDCL !
– Also, MHS MaxSAT algorithms are effective on hard problems

44 / 73

Why back again to NP?

• Fact: There are many hard examples for resolution and CDCL

– One example are pigeonhole formulas (PHP) (more later)

• What we have been looking at?

– Reduce problems to one concrete problem, i.e. Horn MaxSAT
– Develop fast algorithms for Horn MaxSAT

I Use IHSes, MHSes, MUSes, etc.

• What we found out?

– Reductions are remarkably effective for PHP in practice

– There exist polynomial time proofs that PHP is unsatisfiable !

I Using core-guided algorithms; and
I Using MaxSAT resolution

– But, core-guided algorithms also use CDCL !
– Also, MHS MaxSAT algorithms are effective on hard problems

44 / 73

Why back again to NP?

• Fact: There are many hard examples for resolution and CDCL

– One example are pigeonhole formulas (PHP) (more later)

• What we have been looking at?

– Reduce problems to one concrete problem, i.e. Horn MaxSAT
– Develop fast algorithms for Horn MaxSAT

I Use IHSes, MHSes, MUSes, etc.

• What we found out?

– Reductions are remarkably effective for PHP in practice
– There exist polynomial time proofs that PHP is unsatisfiable !

I Using core-guided algorithms; and
I Using MaxSAT resolution

– But, core-guided algorithms also use CDCL !
– Also, MHS MaxSAT algorithms are effective on hard problems

44 / 73

Why back again to NP?

• Fact: There are many hard examples for resolution and CDCL

– One example are pigeonhole formulas (PHP) (more later)

• What we have been looking at?

– Reduce problems to one concrete problem, i.e. Horn MaxSAT
– Develop fast algorithms for Horn MaxSAT

I Use IHSes, MHSes, MUSes, etc.

• What we found out?

– Reductions are remarkably effective for PHP in practice
– There exist polynomial time proofs that PHP is unsatisfiable !

I Using core-guided algorithms; and
I Using MaxSAT resolution

– But, core-guided algorithms also use CDCL !
– Also, MHS MaxSAT algorithms are effective on hard problems

44 / 73

Why back again to NP?

• Fact: There are many hard examples for resolution and CDCL

– One example are pigeonhole formulas (PHP) (more later)

• What we have been looking at?

– Reduce problems to one concrete problem, i.e. Horn MaxSAT
– Develop fast algorithms for Horn MaxSAT

I Use IHSes, MHSes, MUSes, etc.

• What we found out?

– Reductions are remarkably effective for PHP in practice
– There exist polynomial time proofs that PHP is unsatisfiable !

I Using core-guided algorithms; and
I Using MaxSAT resolution

– But, core-guided algorithms also use CDCL !
– Also, MHS MaxSAT algorithms are effective on hard problems

44 / 73

Plan for part B

1. Recap PHP

2. Reduce SAT to Horn MaxSAT

– Also, what happens to PHP?

3. Develop polynomial time proofs of the unsatisfiability of PHP

– Using an MSU3-like MaxSAT algorithm
– Using MaxSAT resolution

4. Experimental results

– PHP, Urquhart, and combinations thereof

5. Detailed description available from:
https://arxiv.org/abs/1705.01477

45 / 73

https://arxiv.org/abs/1705.01477

Outline

Pigeonhole Formulas

Reduction: SAT to Horn MaxSAT

Polynomial Time Proofs

Experimental Results

46 / 73

Pigeonhole formulas I

• Pigeonhole principle:

– Typical: if m + 1 pigeons are distributed by m holes, then at least
one hole contains more than one pigeon

– Alternative: there exists no injective function mapping from
{1, 2, ...,m + 1} to {1, 2, ...,m}, for m ≥ 1

• Propositional formulation:

Does there exist assignment such that the m + 1 pigeons can
be placed into m holes?

• Encoding: xij variables

47 / 73

Pigeonhole formulas I

• Pigeonhole principle:

– Typical: if m + 1 pigeons are distributed by m holes, then at least
one hole contains more than one pigeon

– Alternative: there exists no injective function mapping from
{1, 2, ...,m + 1} to {1, 2, ...,m}, for m ≥ 1

• Propositional formulation:

Does there exist assignment such that the m + 1 pigeons can
be placed into m holes?

• Encoding: xij variables

47 / 73

Pigeonhole formulas I

• Pigeonhole principle:

– Typical: if m + 1 pigeons are distributed by m holes, then at least
one hole contains more than one pigeon

– Alternative: there exists no injective function mapping from
{1, 2, ...,m + 1} to {1, 2, ...,m}, for m ≥ 1

• Propositional formulation:

Does there exist assignment such that the m + 1 pigeons can
be placed into m holes?

• Encoding: xij variables

1

1

pigeons

holes

m + 1i

j m

47 / 73

Pigeonhole formulas II – propositional encoding PHPm+1
m

• Variables:

– xij = 1 iff the i th pigeon is placed in the j th hole, 1 ≤ i ≤ m + 1,
1 ≤ j ≤ m

• Constraints:

– Each pigeon must be placed in at least one hole, and each hole
must not have more than one pigeon∧m+1

i=1 AtLeast1(xi1, . . . , xim) ∧∧m
j=1 AtMost1(x1j , . . . , xm+1 j)

• Example encoding, with pairwise encoding for AtMost1 constraint:

Constraint Clause(s)

∧m+1
i=1 AtLeast1(xi1, . . . , xim) (xi1 ∨ . . . ∨ xim)

∧m
j=1AtMost1(x1j , . . . , xm+1 j) ∧m+1

r=2 ∧
r−1
s=1 (¬xrj ∨ ¬xsj)

48 / 73

Pigeonhole formulas II – propositional encoding PHPm+1
m

• Variables:

– xij = 1 iff the i th pigeon is placed in the j th hole, 1 ≤ i ≤ m + 1,
1 ≤ j ≤ m

• Constraints:

– Each pigeon must be placed in at least one hole, and each hole
must not have more than one pigeon∧m+1

i=1 AtLeast1(xi1, . . . , xim) ∧∧m
j=1 AtMost1(x1j , . . . , xm+1 j)

• Example encoding, with pairwise encoding for AtMost1 constraint:

Constraint Clause(s)

∧m+1
i=1 AtLeast1(xi1, . . . , xim) (xi1 ∨ . . . ∨ xim)

∧m
j=1AtMost1(x1j , . . . , xm+1 j) ∧m+1

r=2 ∧
r−1
s=1 (¬xrj ∨ ¬xsj)

48 / 73

Pigeonhole formulas II – propositional encoding PHPm+1
m

• Variables:

– xij = 1 iff the i th pigeon is placed in the j th hole, 1 ≤ i ≤ m + 1,
1 ≤ j ≤ m

• Constraints:

– Each pigeon must be placed in at least one hole, and each hole
must not have more than one pigeon∧m+1

i=1 AtLeast1(xi1, . . . , xim) ∧∧m
j=1 AtMost1(x1j , . . . , xm+1 j)

• Example encoding, with pairwise encoding for AtMost1 constraint:

Constraint Clause(s)

∧m+1
i=1 AtLeast1(xi1, . . . , xim) (xi1 ∨ . . . ∨ xim)

∧m
j=1AtMost1(x1j , . . . , xm+1 j) ∧m+1

r=2 ∧
r−1
s=1 (¬xrj ∨ ¬xsj)

48 / 73

Outline

Pigeonhole Formulas

Reduction: SAT to Horn MaxSAT

Polynomial Time Proofs

Experimental Results

49 / 73

Reducing SAT to Horn MaxSAT

• Formula F with variables X = {x1, . . . , xt}

• Replace each original variable xi ∈ X by ni and pi , s.t.
– ni = 1 iff xi = 0
– pi = 1 iff xi = 1
– Add (hard Horn) constraint (¬ni ∨ ¬pi) ⇐ set of clauses P

• Translate each clause cr ∈ F into (hard Horn) clause c ′r ∈ FH :
– Literal xi converted to ¬ni
– Literal ¬xi converted to ¬pi
– Resulting clause is goal clause ⇐ (can do better)

• Soft clauses: S = {(n1), . . . , (nt), (p1), . . . , (pt)}
• Horn MaxSAT formula: 〈FH ∪ P,S〉
• Claim:

F is SAT iff Horn MaxSAT formula has solution with cost ≤ t
– There exists assignment that satisfies hard clauses FH and at least t

soft clauses from S, i.e. cost ≤ t
– Due to P clauses, cost ≥ t; thus F is SAT iff cost = t

50 / 73

Reducing SAT to Horn MaxSAT

• Formula F with variables X = {x1, . . . , xt}
• Replace each original variable xi ∈ X by ni and pi , s.t.

– ni = 1 iff xi = 0
– pi = 1 iff xi = 1
– Add (hard Horn) constraint (¬ni ∨ ¬pi) ⇐ set of clauses P

• Translate each clause cr ∈ F into (hard Horn) clause c ′r ∈ FH :
– Literal xi converted to ¬ni
– Literal ¬xi converted to ¬pi
– Resulting clause is goal clause ⇐ (can do better)

• Soft clauses: S = {(n1), . . . , (nt), (p1), . . . , (pt)}
• Horn MaxSAT formula: 〈FH ∪ P,S〉
• Claim:

F is SAT iff Horn MaxSAT formula has solution with cost ≤ t
– There exists assignment that satisfies hard clauses FH and at least t

soft clauses from S, i.e. cost ≤ t
– Due to P clauses, cost ≥ t; thus F is SAT iff cost = t

50 / 73

Reducing SAT to Horn MaxSAT

• Formula F with variables X = {x1, . . . , xt}
• Replace each original variable xi ∈ X by ni and pi , s.t.

– ni = 1 iff xi = 0
– pi = 1 iff xi = 1
– Add (hard Horn) constraint (¬ni ∨ ¬pi) ⇐ set of clauses P

• Translate each clause cr ∈ F into (hard Horn) clause c ′r ∈ FH :
– Literal xi converted to ¬ni
– Literal ¬xi converted to ¬pi
– Resulting clause is goal clause ⇐ (can do better)

• Soft clauses: S = {(n1), . . . , (nt), (p1), . . . , (pt)}
• Horn MaxSAT formula: 〈FH ∪ P,S〉
• Claim:

F is SAT iff Horn MaxSAT formula has solution with cost ≤ t
– There exists assignment that satisfies hard clauses FH and at least t

soft clauses from S, i.e. cost ≤ t
– Due to P clauses, cost ≥ t; thus F is SAT iff cost = t

50 / 73

Reducing SAT to Horn MaxSAT

• Formula F with variables X = {x1, . . . , xt}
• Replace each original variable xi ∈ X by ni and pi , s.t.

– ni = 1 iff xi = 0
– pi = 1 iff xi = 1
– Add (hard Horn) constraint (¬ni ∨ ¬pi) ⇐ set of clauses P

• Translate each clause cr ∈ F into (hard Horn) clause c ′r ∈ FH :
– Literal xi converted to ¬ni
– Literal ¬xi converted to ¬pi
– Resulting clause is goal clause ⇐ (can do better)

• Soft clauses: S = {(n1), . . . , (nt), (p1), . . . , (pt)}
• Horn MaxSAT formula: 〈FH ∪ P,S〉

• Claim:

F is SAT iff Horn MaxSAT formula has solution with cost ≤ t
– There exists assignment that satisfies hard clauses FH and at least t

soft clauses from S, i.e. cost ≤ t
– Due to P clauses, cost ≥ t; thus F is SAT iff cost = t

50 / 73

Reducing SAT to Horn MaxSAT

• Formula F with variables X = {x1, . . . , xt}
• Replace each original variable xi ∈ X by ni and pi , s.t.

– ni = 1 iff xi = 0
– pi = 1 iff xi = 1
– Add (hard Horn) constraint (¬ni ∨ ¬pi) ⇐ set of clauses P

• Translate each clause cr ∈ F into (hard Horn) clause c ′r ∈ FH :
– Literal xi converted to ¬ni
– Literal ¬xi converted to ¬pi
– Resulting clause is goal clause ⇐ (can do better)

• Soft clauses: S = {(n1), . . . , (nt), (p1), . . . , (pt)}
• Horn MaxSAT formula: 〈FH ∪ P,S〉
• Claim:

F is SAT iff Horn MaxSAT formula has solution with cost ≤ t
– There exists assignment that satisfies hard clauses FH and at least t

soft clauses from S, i.e. cost ≤ t
– Due to P clauses, cost ≥ t; thus F is SAT iff cost = t

50 / 73

An example

• CNF formula:

F = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3)

• New variables: {n1, p1, n2, p2, n3, p3}

• Soft clauses: S = {(n1), (p1), (n2), (p2), (n3), (p3)}

• Clauses in P:

P , (¬n1 ∨ ¬p1) ∧ (¬n2 ∨ ¬p2) ∧ (¬n3 ∨ ¬p3)

• Original clauses converted to:

FH , (¬n1 ∨ ¬p2 ∨ ¬n3) ∧ (¬n2 ∨ ¬n3) ∧ (¬p1 ∨ ¬p3)

• Resulting formula: 〈FH ∪ P,S〉

• F is satisfiable iff Horn MaxSAT formula has a solution with cost 3

51 / 73

An example

• CNF formula:

F = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3)

• New variables: {n1, p1, n2, p2, n3, p3}

• Soft clauses: S = {(n1), (p1), (n2), (p2), (n3), (p3)}

• Clauses in P:

P , (¬n1 ∨ ¬p1) ∧ (¬n2 ∨ ¬p2) ∧ (¬n3 ∨ ¬p3)

• Original clauses converted to:

FH , (¬n1 ∨ ¬p2 ∨ ¬n3) ∧ (¬n2 ∨ ¬n3) ∧ (¬p1 ∨ ¬p3)

• Resulting formula: 〈FH ∪ P,S〉

• F is satisfiable iff Horn MaxSAT formula has a solution with cost 3

51 / 73

An example

• CNF formula:

F = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3)

• New variables: {n1, p1, n2, p2, n3, p3}

• Soft clauses: S = {(n1), (p1), (n2), (p2), (n3), (p3)}

• Clauses in P:

P , (¬n1 ∨ ¬p1) ∧ (¬n2 ∨ ¬p2) ∧ (¬n3 ∨ ¬p3)

• Original clauses converted to:

FH , (¬n1 ∨ ¬p2 ∨ ¬n3) ∧ (¬n2 ∨ ¬n3) ∧ (¬p1 ∨ ¬p3)

• Resulting formula: 〈FH ∪ P,S〉

• F is satisfiable iff Horn MaxSAT formula has a solution with cost 3

51 / 73

An example

• CNF formula:

F = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3)

• New variables: {n1, p1, n2, p2, n3, p3}

• Soft clauses: S = {(n1), (p1), (n2), (p2), (n3), (p3)}

• Clauses in P:

P , (¬n1 ∨ ¬p1) ∧ (¬n2 ∨ ¬p2) ∧ (¬n3 ∨ ¬p3)

• Original clauses converted to:

FH , (¬n1 ∨ ¬p2 ∨ ¬n3) ∧ (¬n2 ∨ ¬n3) ∧ (¬p1 ∨ ¬p3)

• Resulting formula: 〈FH ∪ P,S〉

• F is satisfiable iff Horn MaxSAT formula has a solution with cost 3

51 / 73

An example

• CNF formula:

F = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3)

• New variables: {n1, p1, n2, p2, n3, p3}

• Soft clauses: S = {(n1), (p1), (n2), (p2), (n3), (p3)}

• Clauses in P:

P , (¬n1 ∨ ¬p1) ∧ (¬n2 ∨ ¬p2) ∧ (¬n3 ∨ ¬p3)

• Original clauses converted to:

FH , (¬n1 ∨ ¬p2 ∨ ¬n3) ∧ (¬n2 ∨ ¬n3) ∧ (¬p1 ∨ ¬p3)

• Resulting formula: 〈FH ∪ P,S〉

• F is satisfiable iff Horn MaxSAT formula has a solution with cost 3

51 / 73

PHP as Horn MaxSAT

• New variables nij and pij , for each xij , 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m

• The soft clauses S, with |S| = 2m(m + 1), are given by

{ (n11), . . . , (n1m), . . . , (nm+1 1), . . . , (nm+1m),
(p11), . . . , (p1m), . . . , (pm+1 1), . . . , (pm+1m) }

• Clauses in P: P = {(¬nij ∨ ¬pij) | 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m}
• AtLeast1 constraints encoded as Li , 1 ≤ i ≤ m + 1

• AtMost1 constraints encoded as Mj , 1 ≤ j ≤ m

• Full reduction of PHP to Horn MaxSAT

〈H,S〉 =
〈
∧m+1
i=1 Li ∧ ∧mj=1Mj ∧ P,S

〉
• No more than m(m + 1) clauses can be satisfied, due to P
• PHPm+1

m is satisfiable iff there exists an assignment that satisfies
the hard clauses H and m(m + 1) soft clauses from S

52 / 73

PHP as Horn MaxSAT

• New variables nij and pij , for each xij , 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m

• The soft clauses S, with |S| = 2m(m + 1), are given by

{ (n11), . . . , (n1m), . . . , (nm+1 1), . . . , (nm+1m),
(p11), . . . , (p1m), . . . , (pm+1 1), . . . , (pm+1m) }

• Clauses in P: P = {(¬nij ∨ ¬pij) | 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m}

• AtLeast1 constraints encoded as Li , 1 ≤ i ≤ m + 1

• AtMost1 constraints encoded as Mj , 1 ≤ j ≤ m

• Full reduction of PHP to Horn MaxSAT

〈H,S〉 =
〈
∧m+1
i=1 Li ∧ ∧mj=1Mj ∧ P,S

〉
• No more than m(m + 1) clauses can be satisfied, due to P
• PHPm+1

m is satisfiable iff there exists an assignment that satisfies
the hard clauses H and m(m + 1) soft clauses from S

52 / 73

PHP as Horn MaxSAT

• New variables nij and pij , for each xij , 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m

• The soft clauses S, with |S| = 2m(m + 1), are given by

{ (n11), . . . , (n1m), . . . , (nm+1 1), . . . , (nm+1m),
(p11), . . . , (p1m), . . . , (pm+1 1), . . . , (pm+1m) }

• Clauses in P: P = {(¬nij ∨ ¬pij) | 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m}
• AtLeast1 constraints encoded as Li , 1 ≤ i ≤ m + 1

• AtMost1 constraints encoded as Mj , 1 ≤ j ≤ m

• Full reduction of PHP to Horn MaxSAT

〈H,S〉 =
〈
∧m+1
i=1 Li ∧ ∧mj=1Mj ∧ P,S

〉
• No more than m(m + 1) clauses can be satisfied, due to P
• PHPm+1

m is satisfiable iff there exists an assignment that satisfies
the hard clauses H and m(m + 1) soft clauses from S

52 / 73

PHP as Horn MaxSAT

• New variables nij and pij , for each xij , 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m

• The soft clauses S, with |S| = 2m(m + 1), are given by

{ (n11), . . . , (n1m), . . . , (nm+1 1), . . . , (nm+1m),
(p11), . . . , (p1m), . . . , (pm+1 1), . . . , (pm+1m) }

• Clauses in P: P = {(¬nij ∨ ¬pij) | 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m}
• AtLeast1 constraints encoded as Li , 1 ≤ i ≤ m + 1

• AtMost1 constraints encoded as Mj , 1 ≤ j ≤ m

• Full reduction of PHP to Horn MaxSAT

〈H,S〉 =
〈
∧m+1
i=1 Li ∧ ∧mj=1Mj ∧ P,S

〉

• No more than m(m + 1) clauses can be satisfied, due to P
• PHPm+1

m is satisfiable iff there exists an assignment that satisfies
the hard clauses H and m(m + 1) soft clauses from S

52 / 73

PHP as Horn MaxSAT

• New variables nij and pij , for each xij , 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m

• The soft clauses S, with |S| = 2m(m + 1), are given by

{ (n11), . . . , (n1m), . . . , (nm+1 1), . . . , (nm+1m),
(p11), . . . , (p1m), . . . , (pm+1 1), . . . , (pm+1m) }

• Clauses in P: P = {(¬nij ∨ ¬pij) | 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m}
• AtLeast1 constraints encoded as Li , 1 ≤ i ≤ m + 1

• AtMost1 constraints encoded as Mj , 1 ≤ j ≤ m

• Full reduction of PHP to Horn MaxSAT

〈H,S〉 =
〈
∧m+1
i=1 Li ∧ ∧mj=1Mj ∧ P,S

〉
• No more than m(m + 1) clauses can be satisfied, due to P
• PHPm+1

m is satisfiable iff there exists an assignment that satisfies
the hard clauses H and m(m + 1) soft clauses from S

52 / 73

PHP as Horn MaxSAT II

• Clauses in each Li and in each Mj , with pairwise encoding

Original Constraint Encoded To Clauses

∧m+1
i=1 AtLeast1(xi1, . . . , xim) Li (¬ni1 ∨ . . . ∨ ¬nim)

∧m
j=1AtMost1(x1j , . . . , xm+1,j) Mj ∧m+1

r=2 ∧
r−1
s=1 (¬prj ∨ ¬psj)

• Note: constraints with key structural properties:

– Variables in each Li disjoint from any other Lk and Mj , k 6= i
– Variables in each Mj disjoint from any other Ml , l 6= j

53 / 73

PHP as Horn MaxSAT II

• Clauses in each Li and in each Mj , with pairwise encoding

Original Constraint Encoded To Clauses

∧m+1
i=1 AtLeast1(xi1, . . . , xim) Li (¬ni1 ∨ . . . ∨ ¬nim)

∧m
j=1AtMost1(x1j , . . . , xm+1,j) Mj ∧m+1

r=2 ∧
r−1
s=1 (¬prj ∨ ¬psj)

• Note: constraints with key structural properties:

Constraint Variables

Li (¬ni1 ∨ . . . ∨ ¬nim)

Lk (¬nk1 ∨ . . . ∨ ¬nkm)

Mj ∧m+1
r=2 ∧

r−1
s=1 (¬pr j ∨ ¬psj)

Ml ∧m+1
r=2 ∧

r−1
s=1 (¬pr l ∨ ¬psl)

– Variables in each Li disjoint from any other Lk and Mj , k 6= i
– Variables in each Mj disjoint from any other Ml , l 6= j

53 / 73

Outline

Pigeonhole Formulas

Reduction: SAT to Horn MaxSAT

Polynomial Time Proofs

Experimental Results

54 / 73

Main claims

Claim 1

Core-guided MaxSAT produces a lower bound on the number of
falsified clauses of ≥m(m + 1) + 1 in polynomial time

55 / 73

Main claims

Claim 1

Core-guided MaxSAT produces a lower bound on the number of
falsified clauses of ≥m(m + 1) + 1 in polynomial time

Claim 2

MaxSAT resolution produces a lower bound on the number of falsified
clauses of ≥m(m + 1) + 1 in polynomial time

55 / 73

Main claims

Claim 1

Core-guided MaxSAT produces a lower bound on the number of
falsified clauses of ≥m(m + 1) + 1 in polynomial time

Claim 2

MaxSAT resolution produces a lower bound on the number of falsified
clauses of ≥m(m + 1) + 1 in polynomial time

Corollary

Horn MaxSAT encoding enables polynomial time proofs of the
unsatisfiability of PHP instances, using CDCL SAT solvers

55 / 73

Proof of claim 1 – outline

1. Assume MSU3 MaxSAT algorithm
– Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each Li and each Mj

– Each constraint disjoint from the others (but not from P)

3. Derive large enough lower bound on # of falsified clauses:

4. Each increase in the value of the lower bound obtained by unit
propagation (UP)

– In total: polynomial number of (linear time) UP runs

56 / 73

Proof of claim 1 – outline

1. Assume MSU3 MaxSAT algorithm
– Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each Li and each Mj

– Each constraint disjoint from the others (but not from P)

3. Derive large enough lower bound on # of falsified clauses:

Constr. type # falsified cls # constr In total

Li 1 i = 1, . . . ,m + 1 m + 1

Mj m j = 1, . . . ,m m ·m

m(m + 1) + 1

4. Each increase in the value of the lower bound obtained by unit
propagation (UP)

– In total: polynomial number of (linear time) UP runs

56 / 73

Proof of claim 1 – outline

1. Assume MSU3 MaxSAT algorithm
– Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each Li and each Mj

– Each constraint disjoint from the others (but not from P)

3. Derive large enough lower bound on # of falsified clauses:

Constr. type # falsified cls # constr In total

Li 1 i = 1, . . . ,m + 1 m + 1

Mj m j = 1, . . . ,m m ·m

m(m + 1) + 1

4. Each increase in the value of the lower bound obtained by unit
propagation (UP)

– In total: polynomial number of (linear time) UP runs

56 / 73

Proof of claim 1 – outline

1. Assume MSU3 MaxSAT algorithm
– Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each Li and each Mj

– Each constraint disjoint from the others (but not from P)

3. Derive large enough lower bound on # of falsified clauses:

Constr. type # falsified cls # constr In total

Li 1 i = 1, . . . ,m + 1 m + 1

Mj m j = 1, . . . ,m m ·m

m(m + 1) + 1

4. Each increase in the value of the lower bound obtained by unit
propagation (UP)

– In total: polynomial number of (linear time) UP runs

56 / 73

Proof of claim 1 – unit propagation steps I

Constr Hard cls Soft cls Relaxed clauses
Updated
AtMostk

constr

LB
incr

Li (¬ni1 ∨ . . . ∨ ¬nim) (ni1), . . . , (nim)
(sil ∨ ni1),
1 ≤ l ≤ m

∑m
l=1 sil ≤ 1 1

Mj (¬p1j ∨ ¬p2j) (p1j), (p2j)
(r1j ∨ p1j),
(r2j ∨ p2j)

∑2
l=1 rlj ≤ 1 1

Mj

(¬p1j ∨ ¬p3j),
(¬p2j ∨ ¬p3j),

(r1j ∨ p1j),
(r2j ∨ p2j),∑2
l=1 rlj ≤ 1

(p3j) (r3j ∨ p3j)
∑3

l=1 rlj ≤ 2 1

· · ·

Mj

(¬p1j∨¬pm+1j), . . .,
(¬pmj ∨ ¬pm+1j),

(r1j ∨ p1j), . . .,
(rmj ∨ pmj),∑m
l=1 rlj ≤ m − 1

(pm+1j) (rm+1j ∨ pm+1j)
∑m+1

l=1 rlj ≤ m 1

57 / 73

Proof of claim 1 – unit propagation steps II

Clauses Unit Propagation

(pk+1 j) pk+1 j = 1

(¬p1j ∨¬pk+1 j), . . . , (¬pkj ∨¬pk+1 j) p1j = . . . = pkj = 0

(r1j ∨ p1j), . . . , (rkj ∨ pkj) r1j = . . . = rkj = 1∑k
l=1 rlj ≤ k − 1

(∑k
l=1 rlj ≤ k − 1

)
`1⊥

• Key points:

– For each Li , UP raises LB by 1
– For each Mj , UP raises LB by m
– In total, UP raises LB by m(m + 1) + 1
– PHPm+1

m is unsatisfiable

58 / 73

Proof of claim 2 – recap MaxSAT resolution

• Clauses: (x ∨ A, u) and (¬x ∨ B,w)

• m , min(u,w)

• u 	 w , (u ==>) ?> : u − w , with u ≥ w

• Example MaxSAT resolution steps:

Clause 1 Clause 2 Derived Clauses

(x ∨ A, u) (¬x ∨ B,w)
(A ∨ B,m), (x ∨ A, u 	m), (¬x ∨ B,w 	m),

(x ∨ A ∨ ¬B,m), (¬x ∨ ¬A ∨ B,m)

(x ∨ A, 1) (¬x ,>) (A, 1), (¬x ,>), (¬x ∨ ¬A, 1)

59 / 73

Proof of claim 2 – outline

• Follow ideas used in previous proof

• Mimic unit propagation steps as MaxSAT resolution steps

• Each increase in LB corresponds to deriving one empty clause

• In total: polynomial number of steps, each running in polynomial
time

60 / 73

Proof of claim 2 – key steps I

Constraint Clauses Resulting clause(s)

Li
(¬ni1 ∨ . . . ∨ ¬nim,>),

(ni1, 1)
(¬ni2 ∨ . . . ∨ ¬nim, 1) , . . .

Li
(¬ni2 ∨ . . . ∨ ¬nim, 1),

(ni2, 1)
(¬ni3 ∨ . . . ∨ ¬nim, 1) , . . .

· · ·

Li
(¬nim, 1),
(nim, 1)

(⊥, 1) , . . .

Mj
(¬p1j ∨ ¬p2j ,>),

(p1j , 1)
(¬p2j , 1), (¬p1j ∨ ¬p2j ,>), (p1j ∨ p2j , 1)

Mj
(¬p2j , 1),
(p2j , 1)

(⊥, 1)

Mj
(¬p1j ∨ ¬p3j ,>),

(p1j ∨ p2j , 1)

(p2j ∨ ¬p3j , 1) , (¬p1j ∨ ¬p3j ,>),

(¬p1j ∨¬p3j ∨¬p2j , 1), (p1j ∨ p2j ∨ p3j , 1)

Mj
(¬p2j ∨ ¬p3j ,>),

(p2j ∨ ¬p3j , 1)
(¬p3j , 1) , (¬p2j ∨ ¬p3j ,>)

Mj
(¬p3j , 1),
(p3j , 1)

(⊥, 1)

61 / 73

Proof of claim 2 – key steps II

Constraint Clauses Resulting clause(s)

· · ·

Mj
(¬p1j ∨ ¬pm+1j ,>),
(p1j ∨ . . . ∨ pmj , 1)

(p2j . . . pmj ∨ ¬pm+1j , 1) , . . .

Mj

(¬p2j ∨ ¬pm+1j ,>),
(p2j ∨ . . . ∨ pmj ∨
¬pm+1j , 1)

(p3j . . . pmj ∨ ¬pm+1j , 1) , . . .

· · ·

Mj
(¬pmj ∨ ¬pm+1j ,>),

(pmj ∨ ¬pm+1j , 1)
¬pm+1j , 1) , . . .

Mj
(pm+1j , 1),
(¬pm+1j , 1)

(⊥, 1)

• Key points:

– For each Li , derive 1 empty clause
– For each Mj , derive m empty clauses
– In total, derive m(m + 1) + 1 empty clauses
– PHPm+1

m is unsatisfiable
62 / 73

Outline

Pigeonhole Formulas

Reduction: SAT to Horn MaxSAT

Polynomial Time Proofs

Experimental Results

63 / 73

Experimental setup

• Instances:

– PHP-pw (46), PHP-sc (46), Urquhart (84), Comb (96)

• Solvers:

SAT SAT+ IHS MaxSAT CG MaxSAT MRes MIP OPB BDD

minisat glucose lgl crypto maxhs lmhs mscg wbo wpm3 eva lp cc sat4j∗ zres

64 / 73

Results on PHP instances: pw vs. sc

0 10 20 30 40 50 60
instances

10−3

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

lp-cnf
lp-wcnf
maxhs
lmhs
mscg
eva
lgl
lmhs-nes
zres
glucose
lgl-nocard
cc-cnf
cc-opb

0 10 20 30 40 50
instances

10−3

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

lp-cnf
lp-wcnf
maxhs
lmhs
mscg
lmhs-nes
eva

glucose
lgl-nocard
lgl
zres
cc-cnf
cc-opb

65 / 73

Effect of P clauses

0 20 40 60 80 100
instances

10−3

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

mscg (no P)
maxhs
lmhs
wbo (no P)
mscg
eva (no P)
eva
lmhs-nes (no P)
lmhs-nes
wbo

66 / 73

Effect of P clauses on mscg and wbo

10−3 10−2 10−1 100 101 102 103 104

PHP-nop

10−3

10−2

10−1

100

101

102

103

104

PH
P

1800 sec. timeout

18
00

se
c.

tim
eo

ut

10−3 10−2 10−1 100 101 102 103 104

PHP-nop

10−3

10−2

10−1

100

101

102

103

104

PH
P

1800 sec. timeout

18
00

se
c.

tim
eo

ut

67 / 73

Results on Urquhart & combined instances

0 10 20 30 40 50 60 70 80 90
instances

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

zres
maxhs
lmhs
lmhs-nes
lgl
lp-wcnf

mscg
lgl-nogauss
glucose
eva
cc-cnf

0 20 40 60 80 100
instances

10−1

100

101

102

103

C
PU

tim
e

(s
)

lmhs
lmhs-nes
maxhs
lgl-nocard

zres
lgl
lp-wcnf
glucose

mscg
eva
cc-cnf

68 / 73

More detail in arXiv report

“On Tackling the Limits of Resolution in SAT Solving”

A. Ignatiev, A. Morgado, and J. Marques-Silva

https://arxiv.org/abs/1705.01477

69 / 73

https://arxiv.org/abs/1705.01477

Part III

Wrap Up

70 / 73

Conclusions

• Covered some examples of problem solving using SAT oracles
– MaxSAT solving
– 2QBF solving

• But, many more examples:
– MUS & MCS extraction
– MUS & MCS enumeration
– Prime compilation
– Implicit hitting sets
– Quantification: decision, QMaxSAT, abduction, ...
– Smallest MUSes
– Approximate model counting
– Also: backbones; autarkies/lean kernels, ...
– Also: (many) practical applications

• (Horn) MaxSAT solvers can solve (in polynomial time) hard
instances for resolution

– If equipped with the right reduction

71 / 73

Conclusions

• Covered some examples of problem solving using SAT oracles
– MaxSAT solving
– 2QBF solving

• But, many more examples:
– MUS & MCS extraction
– MUS & MCS enumeration
– Prime compilation
– Implicit hitting sets
– Quantification: decision, QMaxSAT, abduction, ...
– Smallest MUSes
– Approximate model counting
– Also: backbones; autarkies/lean kernels, ...
– Also: (many) practical applications

• (Horn) MaxSAT solvers can solve (in polynomial time) hard
instances for resolution

– If equipped with the right reduction

71 / 73

Some research topics

• Beyond NP:
– Query complexity
– Enumeration
– Quantification
– Implicit hitting sets & duality
– ...

• Applications:
– Diagnosis
– Axiom pinpointing
– Planning
– Reachability
– Synthesis
– Networking
– Configuration
– Argumentation
– ...

• Also, where to go with Horn MaxSAT?

72 / 73

Some research topics

• Beyond NP:
– Query complexity
– Enumeration
– Quantification
– Implicit hitting sets & duality
– ...

• Applications:
– Diagnosis
– Axiom pinpointing
– Planning
– Reachability
– Synthesis
– Networking
– Configuration
– Argumentation
– ...

• Also, where to go with Horn MaxSAT?

72 / 73

Some research topics

• Beyond NP:
– Query complexity
– Enumeration
– Quantification
– Implicit hitting sets & duality
– ...

• Applications:
– Diagnosis
– Axiom pinpointing
– Planning
– Reachability
– Synthesis
– Networking
– Configuration
– Argumentation
– ...

• Also, where to go with Horn MaxSAT?

72 / 73

Thank You

73 / 73

	From NP to Beyond NP
	Background
	MaxSAT Solving
	Iterative SAT Solving
	Core-Guided Algorithms
	Minimum Hitting Sets

	2QBF Solving

	Back Again (to NP)
	Pigeonhole Formulas
	Reduction: SAT to Horn MaxSAT
	Polynomial Time Proofs
	Experimental Results

	Wrap Up

