Computing with Oracles
 From NP to Beyond NP and Back Again

Joao Marques-Silva

University of Lisbon, Portugal

Beyond NP Meeting

Paris, France
10 May 2017

The SAT disruption

- SAT is NP-complete

The SAT disruption

- SAT is NP-complete
[Cook'71]
- But, CDCL SAT solving is a success story of Computer Science

The SAT disruption

- SAT is NP-complete
[Cook'71]
- But, CDCL SAT solving is a success story of Computer Science
- Hundreds (thousands?) of practical applications

SAT solver improvement I

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

SAT solver improvement II

SAT is the engines' engine

SAT is ubiquitous in problem solving

SAT can make the difference - propositional abduction

- Topic(s): quantified optimization
[ECAI'16]
- Instances: KR16 propositional abduction

SAT can make the difference - axiom pinpointing

- Topic(s): MUS enumeration; MCSes; implicit hitting sets
- Instances: $\mathcal{E} \mathcal{L}^{+}$medical ontologies

Part I

From NP to Beyond NP

Outline - part A

Background

MaxSAT Solving

2QBF Solving

Outline

Background

MaxSAT Solving

2QBF Solving

Beyond decision problems

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems
Some solution	

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	Enumeration Problems

... and beyond NP - decision and function problems

$$
\Delta_{0}^{\mathrm{p}}=\Sigma_{0}^{\mathrm{p}}=\mathrm{P}=\Pi_{0}^{\mathrm{p}}=\Delta_{1}^{\mathrm{p}}
$$

Oracle-based problem solving - ideal scenario

Oracle-based problem solving - in some settings

Many problems to solve - within FPNP

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	Enumeration Problems

Many problems to solve - within $\mathrm{FP}^{N P}$

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	Enumeration Problems

Function Problems on Propositional Formulas		
MaxSAT PBO	WBO	MinSAT
Minimal Models Prime Implicants		
Maximal Models		Autarkies
Backbones	Prime Implicates	
muSes MCSes	MESes	Indep. Vars
MFSes MSSes	MDSes	Implicant Ext.
	MNSes Im	mplicate Ext.
MCFSes		

Many problems to solve - within $\mathrm{FP}^{N P}$

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	Enumeration Problems

Selection of topics

Outline

Background

MaxSAT Solving

2QBF Solving

Recap MaxSAT

$x_{6} \vee x_{2}$	$\neg x_{6} \vee x_{2}$	$\neg x_{2} \vee x_{1}$	$\neg x_{1}$
$\neg x_{6} \vee x_{8}$	$x_{6} \vee \neg x_{8}$	$x_{2} \vee x_{4}$	$\neg x_{4} \vee x_{5}$
$x_{7} \vee x_{5}$	$\neg x_{7} \vee x_{5}$	$\neg x_{5} \vee x_{3}$	$\neg x_{3}$

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable

Recap MaxSAT

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula

Recap MaxSAT

$$
\begin{array}{llll}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
- The MaxSAT solution is one of the smallest MCSes

Recap MaxSAT

$$
\begin{array}{lccc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
- The MaxSAT solution is one of the smallest MCSes
- Note: Clauses can have weights \& there can be hard clauses

Recap MaxSAT

$$
\begin{array}{cccc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
- The MaxSAT solution is one of the smallest cost MCSes
- Note: Clauses can have weights \& there can be hard clauses

Recap MaxSAT

$$
\begin{array}{lccc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
- The MaxSAT solution is one of the smallest cost MCSes
- Note: Clauses can have weights \& there can be hard clauses
- Many practical applications

The MaxSAT (r)evolution - plain industrial instances

Number x of instances solved in y seconds

Source: [MaxSAT 2014 organizers]

The MaxSAT (r)evolution - plain industrial instances

Number x of instances solved in y seconds

The MaxSAT (r)evolution - partial

Number x of instances solved in y seconds

Source: [MaxSAT 2014 organizers]

The MaxSAT (r)evolution - partial

Number x of instances solved in y seconds

The MaxSAT (r)evolution - weighted partial

Number x of instances solved in y seconds

Source: [MaxSAT 2014 organizers]

The MaxSAT (r)evolution - weighted partial

Number x of instances solved in y seconds

Many MaxSAT approaches

Many MaxSAT approaches

- For practical (industrial) instances: core-guided approaches are the most effective

Outline

Background

MaxSAT Solving
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

2QBF Solving

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

Example CNF formula

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
& & &
\end{array}
$$

Relax all clauses; Set $U B=12+1$

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
\sum_{i=1}^{12} r_{i} \leq 12 & & &
\end{array}
$$

Formula is SAT; E.g. all $x_{i}=0$ and $r_{1}=r_{7}=r_{9}=1$ (i.e. cost $=3$)

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
& & & \\
\sum_{i=1}^{12} r_{i} \leq 2 & & &
\end{array}
$$

Refine $U B=3$

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
& & &
\end{array}
$$

Formula is SAT; E.g. $x_{1}=x_{2}=1 ; x_{3}=\ldots=x_{8}=0$ and $r_{4}=r_{9}=1$ (i.e. cost $=2$)

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
& & & \\
\sum_{i=1}^{12} r_{i} \leq 1 & & &
\end{array}
$$

Refine $U B=2$

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
\sum_{i=1}^{12} r_{i} \leq 1 & & &
\end{array}
$$

Formula is UNSAT; terminate

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
& & &
\end{array}
$$

MaxSAT solution is last satisfied UB: $U B=2$

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
\sum_{i=1}^{12} r_{i} \leq 1 & & &
\end{array}
$$

MaxSAT solutio is last satisfied UB: $U B=2$

AtMostk/PB constraints over all relaxation variables

All (possibly many) soft clauses relaxed

Outline

Background

MaxSAT Solving
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

2QBF Solving

MSU3 core-guided algorithm

$$
\begin{array}{lllc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

Example CNF formula

MSU3 core-guided algorithm

$$
\begin{array}{ll}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5}
\end{array}
$$

Formula is UNSAT; OPT $\leq|\varphi|-1$; Get unsat core

MSU3 core-guided algorithm

$$
\begin{array}{cccc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{6} r_{i} \leq 1 & & &
\end{array}
$$

Add relaxation variables and AtMost $k, k=1$, constraint

MSU3 core-guided algorithm

Formula is (again) UNSAT; OPT $\leq|\varphi|-2$; Get unsat core

MSU3 core-guided algorithm

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

Add new relaxation variables and update AtMost k, $k=2$, constraint

MSU3 core-guided algorithm

$$
\begin{array}{lccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & &
\end{array}
$$

Instance is now SAT

MSU3 core-guided algorithm

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

MaxSAT solution is $|\varphi|-\mathcal{I}=12-2=10$

MSU3 core-guided algorithm

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

MaxSAT solu ion is $|\varphi|-\mathcal{I}=12-2=10$

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

MSU3 core-guided algorithm

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

MaxSAT solu ion is $|\varphi|-\mathcal{I}=, 2-2=10$

AtMostk/PB
constraints used

Some clauses not relaxed

Relaxed soft clauses become hard

Outline

Background

MaxSAT Solving
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

2QBF Solving

MHS approach for MaxSAT

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\emptyset
\end{gathered}
$$

- Find MHS of \mathcal{K} :

MHS approach for MaxSAT

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\emptyset
\end{gathered}
$$

- Find MHS of \mathcal{K} : \emptyset

MHS approach for MaxSAT

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\emptyset
\end{gathered}
$$

- Find MHS of \mathcal{K} : \emptyset
- $\operatorname{SAT}(\mathcal{F} \backslash \emptyset)$?

MHS approach for MaxSAT

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\emptyset
\end{gathered}
$$

- Find MHS of \mathcal{K} : \emptyset
- $\operatorname{SAT}(\mathcal{F} \backslash \emptyset)$? No

MHS approach for MaxSAT

$$
\begin{aligned}
& c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
& c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
& c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
& \mathcal{K}=\emptyset
\end{aligned}
$$

- Find MHS of \mathcal{K} : \emptyset
- $\operatorname{SAT}(\mathcal{F} \backslash \emptyset)$? No
- Core of $\mathcal{F}:\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$

MHS approach for MaxSAT

$$
\begin{aligned}
& c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
& c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
& c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
& \mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{aligned}
$$

- Find MHS of \mathcal{K} : \emptyset
- $\operatorname{SAT}(\mathcal{F} \backslash \emptyset)$? No
- Core of $\mathcal{F}:\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$. Update \mathcal{K}

MHS approach for MaxSAT

$$
\begin{aligned}
& c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
& c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
& c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
& \mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{aligned}
$$

- Find MHS of \mathcal{K} :

MHS approach for MaxSAT

$$
\begin{aligned}
& c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
& c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
& c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
& \mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{aligned}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$

MHS approach for MaxSAT

$$
\begin{aligned}
& c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
& c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
& c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
& \mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{aligned}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}\right\}\right)$?

MHS approach for MaxSAT

$$
\begin{aligned}
& c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
& c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
& c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
& \mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{aligned}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}\right\}\right)$? No

MHS approach for MaxSAT

$$
\begin{aligned}
& c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
& c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
& c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
& \mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{aligned}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}\right\}\right)$? No
- Core of $\mathcal{F}:\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}$

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}\right\}\right)$? No
- Core of $\mathcal{F}:\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}$. Update \mathcal{K}

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} :

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}, c_{9}\right\}\right)$?

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}, c_{9}\right\}\right)$? No

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}, c_{9}\right\}\right)$? No
- Core of $\mathcal{F}:\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}$

MHS approach for MaxSAT

$$
\left.\begin{array}{c}
c_{1}=x_{6} \vee x_{2} \\
c_{2}=\neg x_{6} \vee x_{2} \\
c_{5}=\neg x_{6} \vee x_{8}=\neg x_{2} \vee x_{1}
\end{array} c_{6}=x_{6} \vee \neg x_{8}=\neg x_{1} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5}\right\}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}, c_{9}\right\}\right)$? No
- Core of $\mathcal{F}:\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}$. Update \mathcal{K}

MHS approach for MaxSAT

$$
\left.\begin{array}{c}
c_{1}=x_{6} \vee x_{2} \\
c_{2}=\neg x_{6} \vee x_{2} \\
c_{5}=\neg x_{6} \vee x_{8}=\neg x_{2} \vee x_{1}
\end{array} c_{6}=x_{6} \vee \neg x_{8}=\neg x_{1} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5}\right\}
$$

- Find MHS of \mathcal{K} :

MHS approach for MaxSAT

$$
\left.\begin{array}{c}
c_{1}=x_{6} \vee x_{2} \\
c_{2}=\neg x_{6} \vee x_{2} \\
c_{5}=\neg x_{6} \vee x_{8}=\neg x_{2} \vee x_{1}
\end{array} c_{6}=x_{6} \vee \neg x_{8}=\neg x_{1} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5}\right\}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{4}, c_{9}\right\}$

MHS approach for MaxSAT

$$
\left.\begin{array}{c}
c_{1}=x_{6} \vee x_{2} \\
c_{2}=\neg x_{6} \vee x_{2} \\
c_{5}=\neg x_{6} \vee x_{8}=\neg x_{2} \vee x_{1}
\end{array} c_{6}=x_{6} \vee \neg x_{8}=\neg x_{1} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5}\right\}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{4}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{4}, c_{9}\right\}\right)$?

MHS approach for MaxSAT

$$
\left.\begin{array}{c}
c_{1}=x_{6} \vee x_{2} \\
c_{2}=\neg x_{6} \vee x_{2}
\end{array} c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1}\right\}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{4}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{4}, c_{9}\right\}\right)$? Yes

MHS approach for MaxSAT

$$
\left.\begin{array}{c}
c_{1}=x_{6} \vee x_{2} \\
c_{2}=\neg x_{6} \vee x_{2}
\end{array} c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1}\right] \text { c } \begin{gathered}
c_{5}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\},\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}\right\}
\end{gathered}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{4}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{4}, c_{9}\right\}\right)$? Yes
- Terminate \& return 2

MaxSAT solving with SAT oracles

- A sample of recent algorithms:

Algorithm	\# Oracle Queries	Reference
Linear search SU	Exponential***	[e.g. LBP10]
Binary search	Linear*	[e.g. FM06]
FM/WMSU1/WPM1	Exponential**	[FM06,MSM08,MMSP09,ABL09a,ABGL12]
WPM2	Exponential**	[ABL10,ABGL13]
Bin-Core-Dis	Linear	[HMMS11,MHMS12]
Iterative MHS	Exponential	[DB111,DB13a,DB13b]

* $\mathcal{O}(\log m)$ queries with SAT oracle, for (partial) unweighted MaxSAT
** Weighted case; depends on computed cores
*** On \# bits of problem instance (due to weights)
- But also additional recent work:
- Progression
- Soft cardinality constraints (OLL)
- MaxSAT resolution
- ...

Outline

Background

MaxSAT Solving

2QBF Solving

Abstraction refinement for QBF

- Many approaches proposed for solving QBF
- Abstraction-refinement proposed for 2QBF in 2011
- Extended to QBF in 2012
- Significant impact in QBF competitions
- Influenced research in QBF solvers
- E.g. see conference papers in 2015/2016
- Ack: Slides adapted from M. Janota SAT'11 talk

Problem definition

Given: $\exists X \forall Y . \phi$, where ϕ is a propositional formula Question: Is there assignment ν to X variables such that $\forall Y . \phi[X / \nu]$?

Problem definition

Given: $\exists X \forall Y . \phi$, where ϕ is a propositional formula Question: Is there assignment ν to X variables such that $\forall Y . \phi[X / \nu]$?

Example

$$
\exists x_{1}, x_{2} \forall y_{1}, y_{2} .\left(x_{1} \rightarrow y_{1}\right) \wedge\left(x_{2} \rightarrow y_{2}\right)
$$

solution: $x_{1}=0, x_{2}=0$

Problem definition

Given: $\exists X \forall Y . \phi$, where ϕ is a propositional formula
Question: Is there assignment ν to X variables such that $\forall Y . \phi[X / \nu]$?

Example

$$
\exists x_{1}, x_{2} \forall y_{1}, y_{2} .\left(x_{1} \rightarrow y_{1}\right) \wedge\left(x_{2} \rightarrow y_{2}\right)
$$

solution: $x_{1}=0, x_{2}=0$

A simple algorithm

- While true
- Pick fresh assignment ν to X variables
- Check with SAT solver whether $\forall Y . \phi[X / \nu]$ holds

Problem definition

Given: $\exists X \forall Y . \phi$, where ϕ is a propositional formula
Question: Is there assignment ν to X variables such that $\forall Y . \phi[X / \nu]$?

Example

$$
\exists x_{1}, x_{2} \forall y_{1}, y_{2} .\left(x_{1} \rightarrow y_{1}\right) \wedge\left(x_{2} \rightarrow y_{2}\right)
$$

solution: $x_{1}=0, x_{2}=0$

A simple algorithm

- While true
- Pick fresh assignment ν to X variables
- Check with SAT solver whether $\forall Y . \phi[X / \nu]$ holds
- How?

Problem definition

Given: $\exists X \forall Y . \phi$, where ϕ is a propositional formula
Question: Is there assignment ν to X variables such that $\forall Y . \phi[X / \nu]$?

Example

$$
\exists x_{1}, x_{2} \forall y_{1}, y_{2} .\left(x_{1} \rightarrow y_{1}\right) \wedge\left(x_{2} \rightarrow y_{2}\right)
$$

solution: $x_{1}=0, x_{2}=0$

A simple algorithm

- While true
- Pick fresh assignment ν to X variables
- Check with SAT solver whether $\forall Y . \phi[X / \nu]$ holds
- How? Check SAT $(\neg \phi[X / \nu])$ is unsat

Looking at assignments

Expanding into SAT

$$
\exists X \forall Y \cdot \phi \Longrightarrow \operatorname{SAT}\left(\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y / \mu]\right)
$$

Expanding into SAT

$$
\exists X \forall Y \cdot \phi \Rightarrow \operatorname{SAT}\left(\bigwedge_{\mu \in \mathcal{B}^{|r|}} \phi[Y / \mu]\right)
$$

Example

$$
\begin{gathered}
\exists x_{1}, x_{2} \forall y_{1}, y_{2} \cdot\left(x_{1} \rightarrow y_{1}\right) \wedge\left(x_{2} \rightarrow y_{2}\right) \\
\left(x_{1} \rightarrow 0\right) \wedge\left(x_{2} \rightarrow 0\right) \\
\wedge \quad\left(x_{1} \rightarrow 0\right) \wedge\left(x_{2} \rightarrow 1\right) \\
\wedge \quad\left(x_{1} \rightarrow 1\right) \wedge\left(x_{2} \rightarrow 0\right) \\
\wedge \quad\left(x_{1} \rightarrow 1\right) \wedge\left(x_{2} \rightarrow 1\right)
\end{gathered}
$$

Abstraction

- Consider only some set of assignments $W \subseteq \mathcal{B}^{|Y|}$

$$
\bigwedge_{\mu \in W} \phi[Y / \mu]
$$

Abstraction

- Consider only some set of assignments $W \subseteq \mathcal{B}^{|Y|}$

$$
\bigwedge_{\mu \in W} \phi[Y / \mu]
$$

- A solution to the original problem is also a solution to the abstraction

$$
\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y / \mu] \Rightarrow \bigwedge_{\mu \in W} \phi[Y / \mu]
$$

Abstraction

- Consider only some set of assignments $W \subseteq \mathcal{B}^{|Y|}$

$$
\bigwedge_{\mu \in W} \phi[Y / \mu]
$$

- A solution to the original problem is also a solution to the abstraction

$$
\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y / \mu] \Rightarrow \bigwedge_{\mu \in W} \phi[Y / \mu]
$$

- But converse not true
- A solution to an abstraction is not necessarily a solution to the original problem

CEGAR loop

input : $\exists X \forall Y . \phi$
output: (true, ν) if there exists ν s.t. $\forall Y \phi[X / \nu]$, (false, -) otherwise

$W \leftarrow \emptyset$

while true do
$\left(\right.$ outc $\left._{1}, \nu\right) \leftarrow \operatorname{SAT}\left(\bigwedge_{\mu \in W} \phi[Y / \mu]\right)$
// find a candidate
if outc ${ }_{1}=$ false then
return (false,-)
end
if ν is a solution
then
return (true, ν)
else
Grow W
// refinement
end
end

CEGAR loop

input : $\exists X \forall Y . \phi$
output: (true, ν) if there exists ν s.t. $\forall Y \phi[X / \nu]$, (false, -) otherwise

$W \leftarrow \emptyset$

while true do
$\left(\right.$ outc $\left._{1}, \nu\right) \leftarrow \operatorname{SAT}\left(\bigwedge_{\mu \in W} \phi[Y / \mu]\right)$
// find a candidate
if outc ${ }_{1}=$ false then
return (false,-)
end
if ν is a solution
// solution check
then
return (true, ν)
else
Grow W
// refinement
end
end

Checking for a solution

An assignment ν is a solution to $\exists X \forall Y . \phi$ iff

$$
\forall Y . \phi[X / \nu] \text { iff UNSAT }(\neg \phi[X / \nu])
$$

Checking for a solution

An assignment ν is a solution to $\exists X \forall Y . \phi$ iff

$$
\forall Y . \phi[X / \nu] \text { iff UNSAT }(\neg \phi[X / \nu])
$$

If $\operatorname{SAT}(\neg \phi[X / \nu])$ for some μ, then μ is a counterexample to ν

Checking for a solution

An assignment ν is a solution to $\exists X \forall Y . \phi$ iff

$$
\forall Y . \phi[X / \nu] \text { iff UNSAT }(\neg \phi[X / \nu])
$$

If $\operatorname{SAT}(\neg \phi[X / \nu])$ for some μ, then μ is a counterexample to ν

Example

$$
\exists x_{1}, x_{2} \forall y_{1}, y_{2} .\left(x_{1} \rightarrow y_{1}\right) \wedge\left(x_{2} \rightarrow y_{2}\right)
$$

- candidate: $x_{1}=1, x_{2}=1$
- $\neg \phi[X / \nu] \triangleq \neg y_{1} \vee \neg y_{2}$
- counterexamples: $y_{1}=0, y_{2}=0$

$$
\begin{aligned}
& y_{1}=0, y_{2}=1 \\
& y_{1}=1, y_{2}=0
\end{aligned}
$$

Refinement

Refinement

Refinement

2QBF algorithm

input : $\exists X \forall Y . \phi$
output: (true, ν) if there exists ν s.t. $\forall Y \phi[X / \nu]$, (false, -) otherwise
$\omega \leftarrow 1$
while true do
(outc $1, \nu) \leftarrow \operatorname{SAT}(\omega) \quad / /$ find a candidate solution
if outc ${ }_{1}=$ false then return (false,-)
end
(outc $2, \mu) \leftarrow \operatorname{SAT}(\neg \phi[X / \nu]) \quad / /$ find a counterexample
if outc ${ }_{2}=$ false then return (true, ν)
end
$\omega \leftarrow \omega \wedge \phi[Y / \mu]$
// refine
end

Properties of refinement

Properties of refinement

Properties of refinement

About refinement step

- No candidate for counterexample appears more than once
- Thus, upper bound on the number of iterations is:

$$
\min \left\{2^{|X|}, 2^{|Y|}\right\}
$$

About refinement step

- No candidate for counterexample appears more than once
- Thus, upper bound on the number of iterations is:

$$
\min \left\{2^{|X|}, 2^{|Y|}\right\}
$$

- Heuristic: look for such counterexamples that are also counterexamples to many other candidates, look for μ s.t.

$$
\neg \phi[X / \nu] \wedge \max \left(\left|\left\{\nu^{\prime} \mid \neg \phi\left[X / \nu^{\prime}, Y / \mu\right]\right\}\right|\right)
$$

Part II

Back Again (to NP)

Why back again to NP?

- Fact: There are many hard examples for resolution and CDCL
- One example are pigeonhole formulas (PHP)

Why back again to NP?

- Fact: There are many hard examples for resolution and CDCL
- One example are pigeonhole formulas (PHP)
- What we have been looking at?
- Reduce problems to one concrete problem, i.e. Horn MaxSAT
- Develop fast algorithms for Horn MaxSAT
- Use IHSes, MHSes, MUSes, etc.

Why back again to NP?

- Fact: There are many hard examples for resolution and CDCL
- One example are pigeonhole formulas (PHP)
- What we have been looking at?
- Reduce problems to one concrete problem, i.e. Horn MaxSAT
- Develop fast algorithms for Horn MaxSAT
- Use IHSes, MHSes, MUSes, etc.
- What we found out?
- Reductions are remarkably effective for PHP in practice

Why back again to NP?

- Fact: There are many hard examples for resolution and CDCL
- One example are pigeonhole formulas (PHP)
- What we have been looking at?
- Reduce problems to one concrete problem, i.e. Horn MaxSAT
- Develop fast algorithms for Horn MaxSAT
- Use IHSes, MHSes, MUSes, etc.
- What we found out?
- Reductions are remarkably effective for PHP in practice
- There exist polynomial time proofs that PHP is unsatisfiable!

Why back again to NP?

- Fact: There are many hard examples for resolution and CDCL
- One example are pigeonhole formulas (PHP)
- What we have been looking at?
- Reduce problems to one concrete problem, i.e. Horn MaxSAT
- Develop fast algorithms for Horn MaxSAT
- Use IHSes, MHSes, MUSes, etc.
- What we found out?
- Reductions are remarkably effective for PHP in practice
- There exist polynomial time proofs that PHP is unsatisfiable!
- Using core-guided algorithms; and
- Using MaxSAT resolution

Why back again to NP?

- Fact: There are many hard examples for resolution and CDCL
- One example are pigeonhole formulas (PHP)
- What we have been looking at?
- Reduce problems to one concrete problem, i.e. Horn MaxSAT
- Develop fast algorithms for Horn MaxSAT
- Use IHSes, MHSes, MUSes, etc.
- What we found out?
- Reductions are remarkably effective for PHP in practice
- There exist polynomial time proofs that PHP is unsatisfiable!
- Using core-guided algorithms; and
- Using MaxSAT resolution
- But, core-guided algorithms also use CDCL!
- Also, MHS MaxSAT algorithms are effective on hard problems

Plan for part B

1. Recap PHP
2. Reduce SAT to Horn MaxSAT

- Also, what happens to PHP?

3. Develop polynomial time proofs of the unsatisfiability of PHP

- Using an MSU3-like MaxSAT algorithm
- Using MaxSAT resolution

4. Experimental results

- PHP, Urquhart, and combinations thereof

5. Detailed description available from:
https://arxiv.org/abs/1705.01477

Outline

Pigeonhole Formulas

Reduction: SAT to Horn MaxSAT

Polynomial Time Proofs

Experimental Results

Pigeonhole formulas I

- Pigeonhole principle:
- Typical: if $m+1$ pigeons are distributed by m holes, then at least one hole contains more than one pigeon
- Alternative: there exists no injective function mapping from $\{1,2, \ldots, m+1\}$ to $\{1,2, \ldots, m\}$, for $m \geq 1$

Pigeonhole formulas I

- Pigeonhole principle:
- Typical: if $m+1$ pigeons are distributed by m holes, then at least one hole contains more than one pigeon
- Alternative: there exists no injective function mapping from $\{1,2, \ldots, m+1\}$ to $\{1,2, \ldots, m\}$, for $m \geq 1$
- Propositional formulation:

Does there exist assignment such that the $m+1$ pigeons can be placed into m holes?

Pigeonhole formulas I

- Pigeonhole principle:
- Typical: if $m+1$ pigeons are distributed by m holes, then at least one hole contains more than one pigeon
- Alternative: there exists no injective function mapping from $\{1,2, \ldots, m+1\}$ to $\{1,2, \ldots, m\}$, for $m \geq 1$
- Propositional formulation:

Does there exist assignment such that the $m+1$ pigeons can be placed into m holes?

- Encoding: $x_{i j}$ variables

Pigeonhole formulas II - propositional encoding PHP_{m}^{m+1}

- Variables:
$-x_{i j}=1$ iff the $i^{\text {th }}$ pigeon is placed in the $j^{\text {th }}$ hole, $1 \leq i \leq m+1$, $1 \leq j \leq m$

Pigeonhole formulas II - propositional encoding PHP_{m}^{m+1}

- Variables:
$-x_{i j}=1$ iff the $i^{\text {th }}$ pigeon is placed in the $j^{\text {th }}$ hole, $1 \leq i \leq m+1$, $1 \leq j \leq m$
- Constraints:
- Each pigeon must be placed in at least one hole, and each hole must not have more than one pigeon

$$
\bigwedge_{i=1}^{m+1} \operatorname{AtLeast} 1\left(x_{i 1}, \ldots, x_{i m}\right) \wedge \bigwedge_{j=1}^{m} \operatorname{AtMost1}\left(x_{1 j}, \ldots, x_{m+1 j}\right)
$$

Pigeonhole formulas II - propositional encoding PHP_{m}^{m+1}

- Variables:
$-x_{i j}=1$ iff the $i^{\text {th }}$ pigeon is placed in the $j^{\text {th }}$ hole, $1 \leq i \leq m+1$, $1 \leq j \leq m$
- Constraints:
- Each pigeon must be placed in at least one hole, and each hole must not have more than one pigeon

$$
\bigwedge_{i=1}^{m+1} \operatorname{AtLeast} 1\left(x_{i 1}, \ldots, x_{i m}\right) \wedge \bigwedge_{j=1}^{m} \operatorname{AtMost1}\left(x_{1 j}, \ldots, x_{m+1 j}\right)
$$

- Example encoding, with pairwise encoding for AtMost1 constraint:

Constraint	Clause(s)
$\wedge_{i=1}^{m+1} \operatorname{AtLeast1}\left(x_{i 1}, \ldots, x_{i m}\right)$	$\left(x_{i 1} \vee \ldots \vee x_{i m}\right)$
$\wedge_{j=1}^{m} \operatorname{AtMost1}\left(x_{1 j}, \ldots, x_{m+1}\right)$	$\wedge_{r=2}^{m+1} \wedge_{s=1}^{r-1}\left(\neg x_{r j} \vee \neg x_{s j}\right)$

Outline

Pigeonhole Formulas

Reduction: SAT to Horn MaxSAT

Polynomial Time Proofs

Experimental Results

Reducing SAT to Horn MaxSAT

- Formula \mathcal{F} with variables $X=\left\{x_{1}, \ldots, x_{t}\right\}$

Reducing SAT to Horn MaxSAT

- Formula \mathcal{F} with variables $X=\left\{x_{1}, \ldots, x_{t}\right\}$
- Replace each original variable $x_{i} \in X$ by n_{i} and p_{i}, s.t.
$-n_{i}=1$ iff $x_{i}=0$
$-p_{i}=1$ iff $x_{i}=1$
- Add (hard Horn) constraint $\left(\neg n_{i} \vee \neg p_{i}\right)$
\Leftarrow set of clauses \mathcal{P}

Reducing SAT to Horn MaxSAT

- Formula \mathcal{F} with variables $X=\left\{x_{1}, \ldots, x_{t}\right\}$
- Replace each original variable $x_{i} \in X$ by n_{i} and p_{i}, s.t.
$-n_{i}=1$ iff $x_{i}=0$
$-p_{i}=1$ iff $x_{i}=1$
- Add (hard Horn) constraint $\left(\neg n_{i} \vee \neg p_{i}\right) \quad \Leftarrow$ set of clauses \mathcal{P}
- Translate each clause $c_{r} \in \mathcal{F}$ into (hard Horn) clause $c_{r}^{\prime} \in \mathcal{F}_{H}$:
- Literal x_{i} converted to $\neg n_{i}$
- Literal $\neg x_{i}$ converted to $\neg p_{i}$
- Resulting clause is goal clause
$\Leftarrow($ can do better $)$

Reducing SAT to Horn MaxSAT

- Formula \mathcal{F} with variables $X=\left\{x_{1}, \ldots, x_{t}\right\}$
- Replace each original variable $x_{i} \in X$ by n_{i} and p_{i}, s.t.
- $n_{i}=1$ iff $x_{i}=0$
- $p_{i}=1$ iff $x_{i}=1$
- Add (hard Horn) constraint $\left(\neg n_{i} \vee \neg p_{i}\right) \quad \Leftarrow$ set of clauses \mathcal{P}
- Translate each clause $c_{r} \in \mathcal{F}$ into (hard Horn) clause $c_{r}^{\prime} \in \mathcal{F}_{H}$:
- Literal x_{i} converted to $\neg n_{i}$
- Literal $\neg x_{i}$ converted to $\neg p_{i}$
- Resulting clause is goal clause \Leftarrow (can do better)
- Soft clauses: $\mathcal{S}=\left\{\left(n_{1}\right), \ldots,\left(n_{t}\right),\left(p_{1}\right), \ldots,\left(p_{t}\right)\right\}$
- Horn MaxSAT formula: $\left\langle\mathcal{F}_{H} \cup \mathcal{P}, \mathcal{S}\right\rangle$

Reducing SAT to Horn MaxSAT

- Formula \mathcal{F} with variables $X=\left\{x_{1}, \ldots, x_{t}\right\}$
- Replace each original variable $x_{i} \in X$ by n_{i} and p_{i}, s.t.
- $n_{i}=1$ iff $x_{i}=0$
- $p_{i}=1$ iff $x_{i}=1$
- Add (hard Horn) constraint $\left(\neg n_{i} \vee \neg p_{i}\right) \quad \Leftarrow$ set of clauses \mathcal{P}
- Translate each clause $c_{r} \in \mathcal{F}$ into (hard Horn) clause $c_{r}^{\prime} \in \mathcal{F}_{H}$:
- Literal x_{i} converted to $\neg n_{i}$
- Literal $\neg x_{i}$ converted to $\neg p_{i}$
- Resulting clause is goal clause $\quad \Leftarrow$ (can do better)
- Soft clauses: $\mathcal{S}=\left\{\left(n_{1}\right), \ldots,\left(n_{t}\right),\left(p_{1}\right), \ldots,\left(p_{t}\right)\right\}$
- Horn MaxSAT formula: $\left\langle\mathcal{F}_{H} \cup \mathcal{P}, \mathcal{S}\right\rangle$
- Claim:
\mathcal{F} is SAT iff Horn MaxSAT formula has solution with cost $\leq t$
- There exists assignment that satisfies hard clauses \mathcal{F}_{H} and at least t soft clauses from \mathcal{S}, i.e. cost $\leq t$
- Due to \mathcal{P} clauses, cost $\geq t$; thus \mathcal{F} is SAT iff cost $=t$

An example

- CNF formula:

$$
\mathcal{F}=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)
$$

An example

- CNF formula:

$$
\mathcal{F}=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)
$$

- New variables: $\left\{n_{1}, p_{1}, n_{2}, p_{2}, n_{3}, p_{3}\right\}$
- Soft clauses: $\mathcal{S}=\left\{\left(n_{1}\right),\left(p_{1}\right),\left(n_{2}\right),\left(p_{2}\right),\left(n_{3}\right),\left(p_{3}\right)\right\}$

An example

- CNF formula:

$$
\mathcal{F}=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)
$$

- New variables: $\left\{n_{1}, p_{1}, n_{2}, p_{2}, n_{3}, p_{3}\right\}$
- Soft clauses: $\mathcal{S}=\left\{\left(n_{1}\right),\left(p_{1}\right),\left(n_{2}\right),\left(p_{2}\right),\left(n_{3}\right),\left(p_{3}\right)\right\}$
- Clauses in \mathcal{P} :

$$
\mathcal{P} \triangleq\left(\neg n_{1} \vee \neg p_{1}\right) \wedge\left(\neg n_{2} \vee \neg p_{2}\right) \wedge\left(\neg n_{3} \vee \neg p_{3}\right)
$$

An example

- CNF formula:

$$
\mathcal{F}=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)
$$

- New variables: $\left\{n_{1}, p_{1}, n_{2}, p_{2}, n_{3}, p_{3}\right\}$
- Soft clauses: $\mathcal{S}=\left\{\left(n_{1}\right),\left(p_{1}\right),\left(n_{2}\right),\left(p_{2}\right),\left(n_{3}\right),\left(p_{3}\right)\right\}$
- Clauses in \mathcal{P} :

$$
\mathcal{P} \triangleq\left(\neg n_{1} \vee \neg p_{1}\right) \wedge\left(\neg n_{2} \vee \neg p_{2}\right) \wedge\left(\neg n_{3} \vee \neg p_{3}\right)
$$

- Original clauses converted to:

$$
\mathcal{F}_{H} \triangleq\left(\neg n_{1} \vee \neg p_{2} \vee \neg n_{3}\right) \wedge\left(\neg n_{2} \vee \neg n_{3}\right) \wedge\left(\neg p_{1} \vee \neg p_{3}\right)
$$

An example

- CNF formula:

$$
\mathcal{F}=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)
$$

- New variables: $\left\{n_{1}, p_{1}, n_{2}, p_{2}, n_{3}, p_{3}\right\}$
- Soft clauses: $\mathcal{S}=\left\{\left(n_{1}\right),\left(p_{1}\right),\left(n_{2}\right),\left(p_{2}\right),\left(n_{3}\right),\left(p_{3}\right)\right\}$
- Clauses in \mathcal{P} :

$$
\mathcal{P} \triangleq\left(\neg n_{1} \vee \neg p_{1}\right) \wedge\left(\neg n_{2} \vee \neg p_{2}\right) \wedge\left(\neg n_{3} \vee \neg p_{3}\right)
$$

- Original clauses converted to:

$$
\mathcal{F}_{H} \triangleq\left(\neg n_{1} \vee \neg p_{2} \vee \neg n_{3}\right) \wedge\left(\neg n_{2} \vee \neg n_{3}\right) \wedge\left(\neg p_{1} \vee \neg p_{3}\right)
$$

- Resulting formula: $\left\langle\mathcal{F}_{H} \cup \mathcal{P}, \mathcal{S}\right\rangle$
- \mathcal{F} is satisfiable iff Horn MaxSAT formula has a solution with cost 3

PHP as Horn MaxSAT

- New variables $n_{i j}$ and $p_{i j}$, for each $x_{i j}, 1 \leq i \leq m+1,1 \leq j \leq m$
- The soft clauses \mathcal{S}, with $|\mathcal{S}|=2 m(m+1)$, are given by

$$
\begin{aligned}
& \left\{\left(n_{11}\right), \ldots,\left(n_{1 m}\right), \ldots,\left(n_{m+11}\right), \ldots,\left(n_{m+1 m}\right)\right. \text {, } \\
& \left.\left(p_{11}\right), \ldots,\left(p_{1 m}\right), \ldots,\left(p_{m+11}\right), \ldots,\left(p_{m+1 m}\right)\right\}
\end{aligned}
$$

PHP as Horn MaxSAT

- New variables $n_{i j}$ and $p_{i j}$, for each $x_{i j}, 1 \leq i \leq m+1,1 \leq j \leq m$
- The soft clauses \mathcal{S}, with $|\mathcal{S}|=2 m(m+1)$, are given by

$$
\begin{aligned}
& \left\{\left(n_{11}\right), \ldots,\left(n_{1 m}\right), \ldots,\left(n_{m+11}\right), \ldots,\left(n_{m+1 m}\right)\right. \text {, } \\
& \left.\left(p_{11}\right), \ldots,\left(p_{1 m}\right), \ldots,\left(p_{m+11}\right), \ldots,\left(p_{m+1 m}\right)\right\}
\end{aligned}
$$

- Clauses in $\mathcal{P}: \mathcal{P}=\left\{\left(\neg n_{i j} \vee \neg p_{i j}\right) \mid 1 \leq i \leq m+1,1 \leq j \leq m\right\}$

PHP as Horn MaxSAT

- New variables $n_{i j}$ and $p_{i j}$, for each $x_{i j}, 1 \leq i \leq m+1,1 \leq j \leq m$
- The soft clauses \mathcal{S}, with $|\mathcal{S}|=2 m(m+1)$, are given by

$$
\begin{aligned}
& \left\{\left(n_{11}\right), \ldots,\left(n_{1 m}\right), \ldots,\left(n_{m+11}\right), \ldots,\left(n_{m+1 m}\right)\right. \text {, } \\
& \left.\left(p_{11}\right), \ldots,\left(p_{1 m}\right), \ldots,\left(p_{m+11}\right), \ldots,\left(p_{m+1 m}\right)\right\}
\end{aligned}
$$

- Clauses in $\mathcal{P}: \mathcal{P}=\left\{\left(\neg n_{i j} \vee \neg p_{i j}\right) \mid 1 \leq i \leq m+1,1 \leq j \leq m\right\}$
- AtLeast1 constraints encoded as $\mathcal{L}_{i}, 1 \leq i \leq m+1$
- AtMost1 constraints encoded as $\mathcal{M}_{j}, 1 \leq j \leq m$

PHP as Horn MaxSAT

- New variables $n_{i j}$ and $p_{i j}$, for each $x_{i j}, 1 \leq i \leq m+1,1 \leq j \leq m$
- The soft clauses \mathcal{S}, with $|\mathcal{S}|=2 m(m+1)$, are given by

$$
\begin{aligned}
& \left.\left\{\begin{array}{l}
\left(n_{11}\right), \ldots,\left(n_{1 m}\right), \ldots,\left(n_{m+11}\right), \ldots,\left(n_{m+1 m}\right), \\
\quad\left(p_{11}\right), \ldots,\left(p_{1 m}\right), \ldots,\left(p_{m+11}\right), \ldots,\left(p_{m+1 m}\right),
\end{array}\right\} .\left\{\begin{array}{l}
\end{array}\right), \ldots, m_{m}\right)
\end{aligned}
$$

- Clauses in $\mathcal{P}: \mathcal{P}=\left\{\left(\neg n_{i j} \vee \neg p_{i j}\right) \mid 1 \leq i \leq m+1,1 \leq j \leq m\right\}$
- AtLeast1 constraints encoded as $\mathcal{L}_{i}, 1 \leq i \leq m+1$
- AtMost1 constraints encoded as $\mathcal{M}_{j}, 1 \leq j \leq m$
- Full reduction of PHP to Horn MaxSAT

$$
\langle\mathcal{H}, \mathcal{S}\rangle=\left\langle\wedge_{i=1}^{m+1} \mathcal{L}_{i} \wedge \wedge_{j=1}^{m} \mathcal{M}_{j} \wedge \mathcal{P}, \mathcal{S}\right\rangle
$$

PHP as Horn MaxSAT

- New variables $n_{i j}$ and $p_{i j}$, for each $x_{i j}, 1 \leq i \leq m+1,1 \leq j \leq m$
- The soft clauses \mathcal{S}, with $|\mathcal{S}|=2 m(m+1)$, are given by

$$
\begin{aligned}
& \left\{\left(n_{11}\right), \ldots,\left(n_{1 m}\right), \ldots,\left(n_{m+11}\right), \ldots,\left(n_{m+1 m}\right)\right. \text {, } \\
& \left.\left(p_{11}\right), \ldots,\left(p_{1 m}\right), \ldots,\left(p_{m+11}\right), \ldots,\left(p_{m+1 m}\right)\right\}
\end{aligned}
$$

- Clauses in $\mathcal{P}: \mathcal{P}=\left\{\left(\neg n_{i j} \vee \neg p_{i j}\right) \mid 1 \leq i \leq m+1,1 \leq j \leq m\right\}$
- AtLeast1 constraints encoded as $\mathcal{L}_{i}, 1 \leq i \leq m+1$
- AtMost1 constraints encoded as $\mathcal{M}_{j}, 1 \leq j \leq m$
- Full reduction of PHP to Horn MaxSAT

$$
\langle\mathcal{H}, \mathcal{S}\rangle=\left\langle\wedge_{i=1}^{m+1} \mathcal{L}_{i} \wedge \wedge_{j=1}^{m} \mathcal{M}_{j} \wedge \mathcal{P}, \mathcal{S}\right\rangle
$$

- No more than $m(m+1)$ clauses can be satisfied, due to \mathcal{P}
- PHP_{m}^{m+1} is satisfiable iff there exists an assignment that satisfies the hard clauses \mathcal{H} and $m(m+1)$ soft clauses from \mathcal{S}

PHP as Horn MaxSAT II

- Clauses in each \mathcal{L}_{i} and in each \mathcal{M}_{j}, with pairwise encoding

Original Constraint	Encoded To	Clauses
$\wedge_{i=1}^{m+1}$ AtLeast1 $\left(x_{i 1}, \ldots, x_{i m}\right)$	\mathcal{L}_{i}	$\left(\neg n_{i 1} \vee \ldots \vee \neg n_{i m}\right)$
$\wedge_{j=1}^{m}$ AtMost1 $\left(x_{1 j}, \ldots, x_{m+1, j}\right)$	\mathcal{M}_{j}	$\wedge_{r=2}^{m+1} \wedge_{s=1}^{r-1}\left(\neg p_{r j} \vee \neg p_{s j}\right)$

PHP as Horn MaxSAT II

- Clauses in each \mathcal{L}_{i} and in each \mathcal{M}_{j}, with pairwise encoding

Original Constraint	Encoded To	Clauses
$\wedge_{i=1}^{m+1} \operatorname{AtLeast1}\left(x_{i 1}, \ldots, x_{i m}\right)$	\mathcal{L}_{i}	$\left(\neg n_{i 1} \vee \ldots \vee \neg n_{i m}\right)$
$\wedge_{j=1}^{m} \operatorname{AtMost1}\left(x_{1 j}, \ldots, x_{m+1, j}\right)$	\mathcal{M}_{j}	$\wedge_{r=2}^{m+1} \wedge_{s=1}^{r-1}\left(\neg p_{r j} \vee \neg p_{s j}\right)$

- Note: constraints with key structural properties:

Constraint	Variables
\mathcal{L}_{i}	$\left(\neg n_{i 1} \vee \ldots \vee \neg n_{i m}\right)$
\mathcal{L}_{k}	$\left(\neg n_{k 1} \vee \ldots \vee \neg n_{k m}\right)$
\mathcal{M}_{j}	$\wedge_{r=2}^{m+1} \wedge_{s=1}^{r-1}\left(\neg p_{r j} \vee \neg p_{s j}\right)$
\mathcal{M}_{l}	$\wedge_{r=2}^{m+1} \wedge_{s=1}^{r-1}\left(\neg p_{r l} \vee \neg p_{s l}\right)$

- Variables in each \mathcal{L}_{i} disjoint from any other \mathcal{L}_{k} and $\mathcal{M}_{j}, k \neq i$
- Variables in each \mathcal{M}_{j} disjoint from any other $\mathcal{M}_{l}, I \neq j$

Outline

Pigeonhole Formulas

Reduction: SAT to Horn MaxSAT

Polynomial Time Proofs

Experimental Results

Main claims

Claim 1

Core-guided MaxSAT produces a lower bound on the number of falsified clauses of $\geq m(m+1)+1$ in polynomial time

Main claims

Claim 1

Core-guided MaxSAT produces a lower bound on the number of falsified clauses of $\geq m(m+1)+1$ in polynomial time

Claim 2

MaxSAT resolution produces a lower bound on the number of falsified clauses of $\geq m(m+1)+1$ in polynomial time

Main claims

Claim 1

Core-guided MaxSAT produces a lower bound on the number of falsified clauses of $\geq m(m+1)+1$ in polynomial time

Claim 2

MaxSAT resolution produces a lower bound on the number of falsified clauses of $\geq m(m+1)+1$ in polynomial time

Corollary

Horn MaxSAT encoding enables polynomial time proofs of the unsatisfiability of PHP instances, using CDCL SAT solvers

Proof of claim 1 - outline

1. Assume MSU3 MaxSAT algorithm

- Note: Suffices to analyze disjoint sets separately

Proof of claim 1 - outline

1. Assume MSU3 MaxSAT algorithm

- Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each \mathcal{L}_{i} and each \mathcal{M}_{j}

- Each constraint disjoint from the others (but not from \mathcal{P})

Proof of claim 1 - outline

1. Assume MSU3 MaxSAT algorithm

- Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each \mathcal{L}_{i} and each \mathcal{M}_{j}

- Each constraint disjoint from the others (but not from \mathcal{P})

3. Derive large enough lower bound on \# of falsified clauses:

Constr. type	\# falsified cls	\# constr	In total
\mathcal{L}_{i}	1	$i=1, \ldots, m+1$	$m+1$
\mathcal{M}_{j}	m	$j=1, \ldots, m$	$m \cdot m$
			$m(m+1)+1$

Proof of claim 1 - outline

1. Assume MSU3 MaxSAT algorithm

- Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each \mathcal{L}_{i} and each \mathcal{M}_{j}

- Each constraint disjoint from the others (but not from \mathcal{P})

3. Derive large enough lower bound on \# of falsified clauses:

Constr. type	\# falsified cls	\# constr	In total
\mathcal{L}_{i}	1	$i=1, \ldots, m+1$	$m+1$
\mathcal{M}_{j}	m	$j=1, \ldots, m$	$m \cdot m$
			$m(m+1)+1$

4. Each increase in the value of the lower bound obtained by unit propagation (UP)

- In total: polynomial number of (linear time) UP runs

Proof of claim 1 - unit propagation steps I

Constr	Hard cls	Soft cls	Relaxed clauses	Updated AtMostk constr	$\begin{aligned} & \text { LB } \\ & \text { incr } \end{aligned}$
\mathcal{L}_{i}	$\left(\neg n_{i 1} \vee \ldots \vee \neg n_{i m}\right)$	$\left(n_{i 1}\right), \ldots,\left(n_{i m}\right)$	$\begin{aligned} & \left(s_{i l} \vee n_{i 1}\right), \\ & 1 \leq I \leq m \end{aligned}$	$\sum_{l=1}^{m} s_{i l} \leq 1$	1
\mathcal{M}_{j}	$\left(\neg p_{1 j} \vee \neg p_{2 j}\right)$	$\left(p_{1 j}\right),\left(p_{2 j}\right)$	$\begin{aligned} & \left(r_{1 j} \vee p_{1 j}\right), \\ & \left(r_{2 j} \vee p_{2 j}\right) \end{aligned}$	$\sum_{l=1}^{2} r_{l j} \leq 1$	1
\mathcal{M}_{j}	$\begin{gathered} \left(\neg p_{1 j} \vee \neg p_{3 j}\right), \\ \left(\neg p_{2 j} \vee \neg p_{3 j}\right), \\ \left(r_{1 j} \vee p_{1 j}\right), \\ \left(r_{2 j} \vee p_{2 j}\right), \\ \sum_{l=1}^{2} r_{l j} \leq 1, \end{gathered}$	$\left(p_{3 j}\right)$	$\left(r_{3 j} \vee p_{3 j}\right)$	$\sum_{l=1}^{3} r_{l j} \leq 2$	1
\ldots					
\mathcal{M}_{j}	$\begin{gathered} \left(\neg p_{1 j} \vee \neg p_{m+1 j}\right), \ldots, \\ \left(\neg p_{m j} \vee \neg p_{m+1 j}\right), \\ \left(r_{1 j} \vee p_{1 j}\right), \ldots, \\ \left(r_{m j} \vee p_{m j}\right), \\ \sum_{l=1}^{m} r_{l j} \leq m-1 \\ \hline \end{gathered}$	$\left(p_{m+1 j}\right)$	$\left(r_{m+1 j} \vee p_{m+1 j}\right)$	$\sum_{l=1}^{m+1} r_{l j} \leq m$	1

Proof of claim 1 - unit propagation steps II

Clauses	Unit Propagation
$\left(p_{k+1 j}\right)$	$p_{k+1 j}=1$
$\left(\neg p_{1 j} \vee \neg p_{k+1 j}\right), \ldots,\left(\neg p_{k j} \vee \neg p_{k+1 j}\right)$	$p_{1 j}=\ldots=p_{k j}=0$
$\left(r_{1 j} \vee p_{1 j}\right), \ldots,\left(r_{k j} \vee p_{k j}\right)$	$r_{1 j}=\ldots=r_{k j}=1$
$\sum_{l=1}^{k} r_{l j} \leq k-1$	$\left(\sum_{l=1}^{k} r_{l j} \leq k-1\right) \vdash_{1} \perp$

- Key points:
- For each \mathcal{L}_{i}, UP raises LB by 1
- For each \mathcal{M}_{j}, UP raises LB by m
- In total, UP raises LB by $m(m+1)+1$
- PHP_{m}^{m+1} is unsatisfiable

Proof of claim 2 - recap MaxSAT resolution

- Clauses: $(x \vee A, u)$ and $(\neg x \vee B, w)$
- $m \triangleq \min (u, w)$
- $u \ominus w \triangleq(u==\top)$? $\top: u-w$, with $u \geq w$
- Example MaxSAT resolution steps:

Clause 1	Clause 2	Derived Clauses
$(x \vee A, u)$	$(\neg x \vee B, w)$	$(A \vee B, m),(x \vee A, u \ominus m),(\neg x \vee B, w \ominus m)$, $(x \vee A \vee \neg B, m),(\neg x \vee \neg A \vee B, m)$
$(x \vee A, 1)$	$(\neg x, \top)$	$(A, 1),(\neg x, \top),(\neg x \vee \neg A, 1)$

Proof of claim 2 - outline

- Follow ideas used in previous proof
- Mimic unit propagation steps as MaxSAT resolution steps
- Each increase in LB corresponds to deriving one empty clause
- In total: polynomial number of steps, each running in polynomial time

Proof of claim 2 - key steps I

Constraint	Clauses	Resulting clause(s)
\mathcal{L}_{i}	$\begin{gathered} \left(\neg n_{i 1} \vee \ldots \vee \neg n_{i m}, \top\right), \\ \left(n_{i 1}, 1\right) \\ \hline \end{gathered}$	
\mathcal{L}_{i}	$\begin{gathered} \left(\neg n_{i 2} \vee \ldots \vee \neg n_{i m}, 1\right), \\ \left(n_{i 2}, 1\right) \end{gathered}$	$\bigcirc\left(\neg n_{i 3} \vee \ldots \vee \neg n_{i m}, 1\right), \ldots$
. .		
\mathcal{L}_{i}	$\begin{gathered} \left(\neg n_{i m}, 1\right), \\ \left(n_{i m}, 1\right) \\ \hline \end{gathered}$	($\perp, 1$) , \ldots
\mathcal{M}_{j}	$\begin{gathered} \left(\neg p_{1 j} \vee \neg p_{2 j}, \top\right), \\ \left(p_{1 j}, 1\right) \end{gathered}$	$\left(\neg p_{2 j}, 1\right),\left(\neg p_{1 j} \vee \neg p_{2 j}, \top\right), \stackrel{\ulcorner }{\left(p_{1 j} \vee p_{2 j}, 1\right)!}$
\mathcal{M}_{j}	$\begin{gathered} \left(\neg p_{2 j}, 1\right), \\ \left(p_{2 j}, 1\right) \\ \hline \end{gathered}$	($\perp, 1$)
\mathcal{M}_{j}	$\begin{gathered} \left(\neg p_{1 j} \vee \neg p_{3 j}, \top\right), \\ \left(p_{1 j} \vee p_{2 j}, 1\right) \end{gathered}$	$\begin{gathered} \Gamma\left(p_{2 j} \vee \neg p_{3 j}, 1\right),\left(\neg p_{1 j} \vee \neg p_{3 j}, \top\right), \\ \left(\neg p_{1 j} \vee \neg p_{3 j} \vee \neg p_{2 j}, 1\right), \\ \left(p_{1 j} \vee p_{2 j} \vee p_{3 j}, 1\right) \end{gathered}$
\mathcal{M}_{j}	$\begin{gathered} \left(\neg p_{2 j} \vee \neg p_{3 j}, \top\right), \\ \left(p_{2 j} \vee \neg p_{3 j}, 1\right) \\ \hline \end{gathered}$	$\left[\left(\neg p_{3 j}, 1\right)\right],\left(\neg p_{2 j} \vee \neg p_{3 j}, \top\right)$
\mathcal{M}_{j}	$\begin{gathered} \left(\neg p_{3 j}, 1\right), \\ \left(p_{3 j}, 1\right) \end{gathered}$	($\perp, 1)$

Proof of claim 2 - key steps II

Constraint	Clauses	Resulting clause(s)
\ldots		
\mathcal{M}_{j}	$\begin{gathered} \left(\neg p_{1 j} \vee \neg p_{m+1 j}, \top\right), \\ \left(p_{1 j} \vee \ldots \vee p_{m j}, 1\right) \end{gathered}$	
\mathcal{M}_{j}	$\begin{gathered} \left(\neg p_{2 j} \vee \neg p_{m+1 j}, \top\right), \\ \left(p_{2 j} \vee \ldots \vee p_{m j} \vee\right. \\ \left.\neg p_{m+1 j}, 1\right) \end{gathered}$	($\left.p_{3 j} \ldots p_{m j} \vee \neg p_{m+1 j}, 1\right), \ldots$
\ldots		
\mathcal{M}_{j}	$\begin{gathered} \left(\neg p_{m j} \vee \neg p_{m+1 j}, \top\right), \\ \left(p_{m j} \vee \neg p_{m+1 j}, 1\right) \end{gathered}$	$\left.\bigcirc-\cdots p_{m+1 j}, 1\right), \ldots$
\mathcal{M}_{j}	$\begin{gathered} \left(p_{m+1 j}, 1\right), \\ \left(\neg p_{m+1 j}, 1\right) \end{gathered}$	$(\perp, 1)$

- Key points:
- For each \mathcal{L}_{i}, derive 1 empty clause
- For each \mathcal{M}_{j}, derive m empty clauses
- In total, derive $m(m+1)+1$ empty clauses
- PHP_{m}^{m+1} is unsatisfiable

Outline

Pigeonhole Formulas

Reduction: SAT to Horn MaxSAT

Polynomial Time Proofs

Experimental Results

Experimental setup

- Instances:
- PHP-pw (46), PHP-sc (46), Urquhart (84), Comb (96)
- Solvers:

SAT	SAT+	IHS MaxSAT	CG MaxSAT			MRes	MIP		OPB	BDD
minisat glucose	$\lg \mid$ crypto	maxhs Imhs	mscg	wbo	wpm3	eva	Ip	CC	sat4j*	zres

Results on PHP instances: pw vs. sc

Effect of \mathcal{P} clauses

Effect of \mathcal{P} clauses on mscg and wbo

Results on Urquhart \& combined instances

More detail in arXiv report

"On Tackling the Limits of Resolution in SAT Solving"
A. Ignatiev, A. Morgado, and J. Marques-Silva
https://arxiv.org/abs/1705.01477

Part III

Wrap Up

Conclusions

- Covered some examples of problem solving using SAT oracles
- MaxSAT solving
- 2QBF solving
- But, many more examples:
- MUS \& MCS extraction
- MUS \& MCS enumeration
- Prime compilation
- Implicit hitting sets
- Quantification: decision, QMaxSAT, abduction, ...
- Smallest MUSes
- Approximate model counting
- Also: backbones; autarkies/lean kernels, ...
- Also: (many) practical applications

Conclusions

- Covered some examples of problem solving using SAT oracles
- MaxSAT solving
- 2QBF solving
- But, many more examples:
- MUS \& MCS extraction
- MUS \& MCS enumeration
- Prime compilation
- Implicit hitting sets
- Quantification: decision, QMaxSAT, abduction, ...
- Smallest MUSes
- Approximate model counting
- Also: backbones; autarkies/lean kernels, ...
- Also: (many) practical applications
- (Horn) MaxSAT solvers can solve (in polynomial time) hard instances for resolution
- If equipped with the right reduction

Some research topics

- Beyond NP:
- Query complexity
- Enumeration
- Quantification
- Implicit hitting sets \& duality
- ...

Some research topics

- Beyond NP:
- Query complexity
- Enumeration
- Quantification
- Implicit hitting sets \& duality
- Applications:
- Diagnosis
- Axiom pinpointing
- Planning
- Reachability
- Synthesis
- Networking
- Configuration
- Argumentation
- ...

Some research topics

- Beyond NP:
- Query complexity
- Enumeration
- Quantification
- Implicit hitting sets \& duality
- Applications:
- Diagnosis
- Axiom pinpointing
- Planning
- Reachability
- Synthesis
- Networking
- Configuration
- Argumentation
- Also, where to go with Horn MaxSAT?

Thank You

