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WCSP/MRF

• A set of discrete variables X, each with a domain D

• We define a joint function on all variables f : DX → S

• By decomposing the joint function to a set C of functions of
small arity (factors)

• Concise way of describing complicated functions



Function Aggregation – WCSP

S ≡ R+ ∪ {0,∞}

f (x) =
∑
c∈C

c(x)

• f represents a cost or energy or potential

• Each c is a cost function



Function Aggregation – MRF

S ≡ R+ ∪ {0}

f (x) =
∏
c∈C

c(x)

• Each c is a probability table

P(x) =
f (x)

Z

Z =
1∑

x′
∏

c∈C c(x′)



WCSP/MRF Equivalence

• Given MRF P, a WCSP P ′ has

c ′(x) = − log c(x)

Then

exp(−f ′(x)) ∝ P(x)

Z =
1∑

x′
∏

c∈C exp(−c(x′))

• So we deal with costs only



MAP

• Maximum a posteriori estimation

• Compute assignment with maximum probability in MRF
• By equivalence to WCSP, same problem as cost minimization

• Optimization of an NP-hard set, hence FPNP

• Generalizes Boolean satisfiability, constraint satisfaction



Partition Function

• Compute Z, the normalization constant (probability mass of
the function)

• PPP -complete

• By Toda’s theorem, this is Beyond PH



Marginal MAP

• Partition X into variable sets A,B

• Compute assignment xA that maximizes probability mass of
f |xA

• NPPP



Aside: WCSP as COP

• WCSP combines crisp CSP with arbitrary polynomial objective

• Clever dual bounds

• Small arity is not necessary

• Can use the machinery developed in CSP for more
expressiveness

• Higher level language
• Propagators

• Global Cost Functions an underexplored area

• New scenarios
• MAP: What’s the most likely to succeed schedule
• Marginal MAP: What choices can I make that make schedules

more likely to succeed



Reparameterization

• Use a naive way to compute a bound

• Local transformation that leaves the problem unchanged
• but improves naive bound
• If we touch factors S , require

∀x
∑
c∈S

c(x) =
∑
c∈S

c ′(x)

• Dates back to at least the Held-Karp lower bound for TSP



WCSP reparameterization

Move(c1, c2, x, α)

• Shifts α units of cost between c1 and c2 on the common
assignment x

• Shift direction: sign of α.

• α constrained: no negative costs!

• Commonly restricted to scope(c1) ⊂ scope(c2) and in
particular |scope(c1)| = 1:

Project({i}, {i , j}, a, α)



Example

Project({1, 2}, {1}, b, 1) Project({1, 2}, {2}, a, 1)
← →

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project()({1},∅, [], 1)

c∅ = 1
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Lower bounds for cost minimization

• The sum of the lower bound of each function
minx

∑
c c(x) ≤

∑
c minx∈c c(x)



Min Sum Diffusion

1 Choose overlapping factors c1, c2

2 For every x in the intersection, choose α so that c1(x) = c2(x)

3 Repeat until convergence

• Averages factors

• Will converge as number of iterations goes to infinity, as long
as each pair of factors is chosen infinitely often

• Will converge to arc consistent state



Block Coordinate Descent

• Min Sum Diffusion is a Block Coordinate Descent algorithm

• Differentiate on subproblem, order of updates

• At best will converge to optimum of linear relaxation

• Perform pruning



Branch-and-bound

1 Start with root node, corresponding to initial problem

2 Pick an open node

3 Compute dual bound

1 If the primal bound is violated, close node; else
2 Make a binary choice, replace by two new nodes

4 Go to step 2



Upper bound for Partition Function

• Product of mass of all factors

Z =
∑
x

∏
c

exp(−c(x)) ≤
∏
c

∑
x

exp(−c(x))

• Proof: by distributing the product over the sum



Approximate Z

• Branch and bound

• Ignore subtrees as long as the contribution is small enough

1 Start with root node, corresponding to initial problem, U = 0

2 Pick an open node

3 Compute Z upper bound u

1 If u < εU, close node; else
2 If full assignment, add its weight to U; else
3 Make a binary choice, replace by two new nodes

4 Go to step 2



Marginal MAP

• Prune subtree as soon as upper bound for Z (fxA) is lower than
incumbent

1 Start with root node, corresponding to initial problem

2 Pick an open node

3 Compute Z (f |xA) upper bound u

1 If u < εU, close node; else
2 If all A variables have been assigned, compute Z (fxA),

replacing incumbent if needed; else
3 Make a binary choice on variables in A, replace by two new

nodes

4 Go to step 2



Conclusions

• Reparameterization is a universal tool
• Maintains cost/probability of all assignments, so always

applicable
• Non-trivial improvement of trivial bounds

• Precise connection to linear programming in cost minimization

• Hierarchies of strengthening reparameterizations which change
network

• Linear programming cuts



Q?


