Reparameterization: a Universal Tool for Optimization and Counting

George Katsirelos

10/05/2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

WCSP/MRF

- A set of discrete variables X, each with a domain D
- We define a joint function on all variables $f: D^{\mathbf{X}} \to S$
- By decomposing the joint function to a set C of functions of small arity (*factors*)
- Concise way of describing complicated functions

Function Aggregation – WCSP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$S \equiv \mathbb{R}^+ \cup \{0,\infty\}$$

$$f(\mathbf{x}) = \sum_{c \in \mathcal{C}} c(\mathbf{x})$$

- f represents a cost or energy or potential
- Each c is a cost function

Function Aggregation – MRF

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $S \equiv \mathbb{R}^+ \cup \{0\}$

$$f(\mathbf{x}) = \prod_{c \in \mathcal{C}} c(\mathbf{x})$$

• Each c is a probability table

$$P(\mathbf{x}) = \frac{f(\mathbf{x})}{Z}$$
$$Z = \frac{1}{\sum_{\mathbf{x}'} \prod_{c \in \mathcal{C}} c(\mathbf{x}')}$$

WCSP/MRF Equivalence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Given MRF P, a WCSP P' has

$$c'(\mathbf{x}) = -\log c(\mathbf{x})$$

Then

$$Z = \frac{exp(-f'(\mathbf{x})) \propto P(\mathbf{x})}{\sum_{\mathbf{x}'} \prod_{c \in \mathcal{C}} exp(-c(\mathbf{x}'))}$$

• So we deal with costs only

MAP

- Maximum a posteriori estimation
- Compute assignment with maximum probability in MRF
 - By equivalence to WCSP, same problem as cost minimization
- Optimization of an NP-hard set, hence FP^{NP}
- Generalizes Boolean satisfiability, constraint satisfaction

Partition Function

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Compute Z, the normalization constant (probability mass of the function)
- *P^{PP}*-complete
- By Toda's theorem, this is Beyond PH

Marginal MAP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Partition X into variable sets A, B
- Compute assignment \mathbf{x}_A that maximizes probability mass of $f|_{\mathbf{x}_A}$
- NP^{PP}

Aside: WCSP as COP

- WCSP combines crisp CSP with arbitrary polynomial objective
 - Clever dual bounds
- Small arity is not necessary
- Can use the machinery developed in CSP for more expressiveness
 - Higher level language
 - Propagators
 - Global Cost Functions an underexplored area
- New scenarios
 - MAP: What's the most likely to succeed schedule
 - Marginal MAP: What choices can I make that make schedules more likely to succeed

Reparameterization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Use a naive way to compute a bound
- Local transformation that leaves the problem unchanged
 - but improves naive bound
 - If we touch factors *S*, require

$$\forall \mathbf{x} \sum_{c \in S} c(\mathbf{x}) = \sum_{c \in S} c'(\mathbf{x})$$

Dates back to at least the Held-Karp lower bound for TSP

WCSP reparameterization

$MOVE(c_1, c_2, \mathbf{x}, \alpha)$

- Shifts α units of cost between c₁ and c₂ on the common assignment x
- Shift direction: sign of α .
- *α* constrained: no negative costs!
- Commonly restricted to scope(c₁) ⊂ scope(c₂) and in particular |scope(c₁)| = 1:

PROJECT($\{i\}, \{i, j\}, a, \alpha$)

ヘロト ヘ週ト ヘヨト ヘヨト

æ

 $PROJECT(\{1,2\},\{2\},a,-1)$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

(日) (個) (目) (目) (目) (目)

 $PROJECT(\{1,2\},\{1\},b,-1)$

 \Downarrow Project()({1}, \emptyset , [], 1)

・ロト・西ト・西ト・西・ うらぐ

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

 $\Downarrow \quad \text{Project}()(\{1\}, \emptyset, [], 1)$

 $c_{\varnothing} = 1$

Lower bounds for cost minimization

・ロト・日本・モト・モート ヨー うへで

• The sum of the lower bound of each function $\min_{\mathbf{x}} \sum_{c} c(\mathbf{x}) \leq \sum_{c} \min_{\mathbf{x} \in c} c(\mathbf{x})$

Min Sum Diffusion

- 1 Choose overlapping factors c_1, c_2
- **2** For every **x** in the intersection, choose α so that $c_1(\mathbf{x}) = c_2(\mathbf{x})$
- 3 Repeat until convergence
 - Averages factors
 - Will converge as number of iterations goes to infinity, as long as each pair of factors is chosen infinitely often
 - Will converge to arc consistent state

Block Coordinate Descent

- Min Sum Diffusion is a Block Coordinate Descent algorithm
- Differentiate on subproblem, order of updates
- At best will converge to optimum of linear relaxation
- Perform pruning

Branch-and-bound

- 1 Start with root node, corresponding to initial problem
- 2 Pick an open node
- 3 Compute dual bound
 - 1 If the primal bound is violated, *close* node; else
 - 2 Make a binary choice, replace by two new nodes
- Go to step 2

Upper bound for Partition Function

• Product of mass of all factors

$$Z = \sum_{\mathbf{x}} \prod_{c} exp(-c(\mathbf{x})) \leq \prod_{c} \sum_{\mathbf{x}} exp(-c(\mathbf{x}))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Proof: by distributing the product over the sum

Approximate Z

- Branch and bound
- Ignore subtrees as long as the contribution is small enough
- 1 Start with root node, corresponding to initial problem, U = 0
- 2 Pick an open node
- 3 Compute Z upper bound u
 - **1** If $u < \varepsilon U$, *close* node; else
 - 2 If full assignment, add its weight to U; else
 - 3 Make a binary choice, replace by two new nodes
- 4 Go to step 2

Marginal MAP

- Prune subtree as soon as upper bound for Z(f_{xA}) is lower than incumbent
- 1 Start with root node, corresponding to initial problem
- 2 Pick an open node
- **3** Compute $Z(f|_{\mathbf{x}_A})$ upper bound u
 - **1** If $u < \varepsilon U$, *close* node; else
 - If all A variables have been assigned, compute Z(f_{xA}), replacing incumbent if needed; else
 - 3 Make a binary choice on variables in *A*, replace by two new nodes
- 4 Go to step 2

Conclusions

- Reparameterization is a universal tool
 - Maintains cost/probability of all assignments, so always applicable
 - Non-trivial improvement of trivial bounds
- Precise connection to linear programming in cost minimization
- Hierarchies of strengthening reparameterizations which change network
- Linear programming cuts

Q?

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの