Reparameterization: a Universal Tool for
Optimization and Counting

George Katsirelos

10/05/2017

WCSP/MRF

A set of discrete variables X, each with a domain D
We define a joint function on all variables f : DX — S

By decomposing the joint function to a set C of functions of
small arity (factors)

Concise way of describing complicated functions

Function Aggregation — WCSP

S=RTU{0,00}

ceC

e f represents a cost or energy or potential
e Each c is a cost function

Function Aggregation — MRF

S=R" U {0}

f(x) =[] cx)

ceC

e Each c is a probability table

~ Y Iece (x)

WCSP/MRF Equivalence

e Given MRF P, a WCSP P’ has

c'(x) = —log c(x)
Then

exp(—f'(x)) o< P(x)
1

"~ Y Tlece exp(—c(x))

e So we deal with costs only

Z

MAP

Maximum a posteriori estimation
Compute assignment with maximum probability in MRF

e By equivalence to WCSP, same problem as cost minimization
Optimization of an NP-hard set, hence FpNP

Generalizes Boolean satisfiability, constraint satisfaction

Partition Function

e Compute Z, the normalization constant (probability mass of
the function)

e PPP_complete
e By Toda’'s theorem, this is Beyond PH

Marginal MAP

e Partition X into variable sets A, B

e Compute assignment x4 that maximizes probability mass of
Flxa
o NPPP

Aside: WCSP as COP

WCSP combines crisp CSP with arbitrary polynomial objective

e Clever dual bounds

Small arity is not necessary
Can use the machinery developed in CSP for more
expressiveness

e Higher level language
e Propagators

e Global Cost Functions an underexplored area
New scenarios

o MAP: What's the most likely to succeed schedule
e Marginal MAP: What choices can | make that make schedules
more likely to succeed

Reparameterization

e Use a naive way to compute a bound
e Local transformation that leaves the problem unchanged

e but improves naive bound
e If we touch factors S, require

Vx Z c(x) = Z c'(x)
ces ces

e Dates back to at least the Held-Karp lower bound for TSP

WCSP reparameterization

MOVE(¢y, ¢, X, @)
e Shifts « units of cost between ¢; and ¢ on the common
assignment x
e Shift direction: sign of a.
e « constrained: no negative costs!

e Commonly restricted to scope(cy) C scope(cz) and in
particular |scope(ci)| = 1:

Prosect({i},{i,j},a,)

Example

Example

ProJect({1,2},{2},4a,1)
%

alle ® |a all1e el)\a
b [® b b b
2

Example

ProJect({1,2},{2},4a,1)

alle ® |a alle ®]l\a

bl @ ® /b b b

1 2 1 2
<~

ProJect({1,2},{2},a,—-1)

Prosect({1,2}, {1}, b,1)

Example

Example

Prosect({1,2}, {1}, b,1)

Prosecr({1,2},{1}, b,—-1)

Example

Prosect({1,2}, {1}, b,1)

a alle o |a
b b @ ® /b
2

Prosect()({1},2,[],1)

Example

Prosect({1,2}, {1}, b,1)

a a alle ® |a

bl b b ® ®)b
2

) Prosect()({1},2,[],1)

Cg:]-

Lower bounds for cost minimization

e The sum of the lower bound of each function
miny >, c(x) < > minyec c(x)

Min Sum Diffusion

@ Choose overlapping factors ¢, ¢
@® For every x in the intersection, choose « so that ¢1(x) = c(x)

© Repeat until convergence

e Averages factors

e Will converge as number of iterations goes to infinity, as long
as each pair of factors is chosen infinitely often

e Will converge to arc consistent state

Block Coordinate Descent

Min Sum Diffusion is a Block Coordinate Descent algorithm
Differentiate on subproblem, order of updates
At best will converge to optimum of linear relaxation

Perform pruning

Branch-and-bound

@ Start with root node, corresponding to initial problem

® Pick an open node

©® Compute dual bound

@ If the primal bound is violated, close node; else
@® Make a binary choice, replace by two new nodes

O Go to step 2

Upper bound for Partition Function

e Product of mass of all factors

z=S" T exp(—c(x)) < [3 exp(—c(x))

e Proof: by distributing the product over the sum

Approximate Z

e Branch and bound

e Ignore subtrees as long as the contribution is small enough

@ Start with root node, corresponding to initial problem, U =0
® Pick an open node

© Compute Z upper bound u

@ If u<eU, close node; else
@ If full assignment, add its weight to U; else
© Make a binary choice, replace by two new nodes

O Go to step 2

Marginal MAP

e Prune subtree as soon as upper bound for Z(f,

s) is lower than
incumbent

@ Start with root node, corresponding to initial problem

® Pick an open node
©® Compute Z(f|x,) upper bound u
® If u < eU, close node; else
@ If all A variables have been assigned, compute Z(f%,),
replacing incumbent if needed; else
© Make a binary choice on variables in A, replace by two new
nodes

O Go to step 2

Conclusions

Reparameterization is a universal tool

e Maintains cost/probability of all assignments, so always
applicable
e Non-trivial improvement of trivial bounds

Precise connection to linear programming in cost minimization

Hierarchies of strengthening reparameterizations which change
network

Linear programming cuts

Q7

