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Introduction & Motivation

Semantic Web and Ontologies

Semantic Web (SW) goal: making data on the Web machine understandable1

key role of ontologies → shared vocabulary for assigning data semantics

Examples of existing real ontologies

Schema.org

Gene Ontology

Foundational Model of Anatomy ontology

Financial Industry Business Ontology (by OMG Finance Domain Task Force)

. . .
1
Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The Semantic Web. Scientific American, 284(5), 34–43.
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Introduction & Motivation

OWL standard language ⇒ Description Logics (DLs) theoretical foundation

Ontologies equipped with deductive reasoning capabilities ⇒ allowing to make
explicit, knowledge that is implicit within them

Deduction:
”Crédit du Nord”,
”Crédit Agricole”
are also Company
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Introduction & Motivation

The Web of Data

Progressive amount of annotated and interlinked data on the Web

Web of Data global scale interlinking ontologies and data2

Linked Data: rules for making easier and easier publishing, linking
and sharing data on the Web3

Linked Open Data4 public openness and availability of larger and
larger datasets ⇒ DBpedia5 as a driving force

2
Shadbolt, N., Hall, W., and Berners-Lee, T. (2006). The semantic web revisited. Intelligent Systems, IEEE, 21(3), 96–101.

3
Berners-Lee, T. (2006). Linked data - design issues.

4
https://lod-cloud.net/versions/latest/lod-cloud.svg

5
http://dbpedia.org
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Introduction & Motivation

6

Open KG
online with content freely accessible

BabelNet

DBpedia

Freebase

Wikidata

YAGO

....

Enterprise KG
for commercial usage

Google

Amazon

Facebook

LinkedIn

Microsoft

....

6
picture from https://www.csee.umbc.edu/courses/graduate/691/fall19/07/
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Introduction & Motivation

Applications

e-Commerce

Semantic Search

Fact Checking

Personalization

Recommendation

Medical decision support
system

Question Answering

Machine Translation

...

Research Fields

Information Extraction

Natural Language Processing

Machine Learnig (ML)

Knowledge Representation

Web

Robotics

...
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Introduction & Motivation

Knowledge Graph: Definition
a A graph of data intended to convey knowledge of the real world

conforming to a graph-based data model

nodes represent entities of interest

edges represent different relations between these entities

data graph potentially enhanced with schema

a
A. Hogan et al. Knowledge Graphs. ACM Computing Surveys, 54, 1–37. (2021)

KGs: Main Features

ontologies employed to define and reason about the semantics of
nodes and edges

RDF, RDFS, OWL representation languages largely adopted

grounded on the Open World Assumption (OWA)

very large data collections
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Introduction & Motivation

Knowledge Graph: Example

C. d’Amato (UniBa) ML4SW - Lessons Learnt and Challenges GDR IA 2021 8 / 59



Issues



Introduction & Motivation

KG suffer of incompleteness and noise

e.g. missing links, wrong links
since often result from a complex building process

Ontologies and assertions can be out-of-sync

resulting incomplete, noisy and sometimes inconsistent wrt the actual
usage of the conceptual vocabulary in the assertions

Reasoning cannot be performed or may return counterintuitive results
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Machine Learning & Semantic Web



Introduction & Motivation

Machine Learning methods adopted to discover new/additional knowledge by
exploiting the evidence from the data

[d’Amato 2020 @ SWJ 7, d’Amato at al. @ SWJ 8]

Symbol-based methods

able to exploit background
knowledge and (deductive)
reasoning capabilities

limited in scalability

⇓
Ontology Mining

All activities that allow for
discovering hidden knowledge
from ontological KBs

Numeric-based methods

highly scalable

schema information / reasoning
capabilities disregarded

⇓
Knowledge Graph Refinement

Link Prediction: predicts missing
links between entities

Triple Classification: assesses
statement correctness in a KG

7
d’Amato, C. (2020). Machine learning for the semantic web: Lessons learnt and next research directions. Semantic Web,

11(1), 195–203
8
d’Amato, C., Fanizzi, N., and Esposito, F. (2010). Inductive learning for the semantic web: What does it buy? Semantic
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Introduction & Motivation

Numeric-based methods consist of series of numbers without any obvious
human interpretation

9

This may affects:

the interpretability of the
results

the explainability

and thus also somehow the
trustworthiness of results 10

9
Picture from D. N. Nicholson et al. Constructing knowledge graphs and their biomedical applications, Computational and

Structural Biotechnology Journal, Vol. 18, pp. 1414–1428, (2020) ISSN 2001-0370
10

Picture from https://github.com/topics/knowledge-graph-embeddings
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Introduction & Motivation

Symbol-based learning methods usually provide
interpretable models generalizing conclusions

e.g. trees, rules, logical formulae, etc.

may be exploited for a better understanding of the provided results
could be combined with deductive reasoning to make predictions
limited in scalability

11
11

Picture from https://jaipancholi.com/model-interpretability
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Numeric-based learning methods:

Can be enriched by taking into account schema level
information and reasoning capabilities?

If so, may it be beneficial?

Symbol-based learning methods:

Can be still be applied to KGs?

Why doing so?
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Numeric-based learning methods KG embedding methods

KG Embedding Models...

Vector embedding models largely investigated 12

convert data graph into an optimal low-dimensional space

Graph structural information preserved as much as possible

CWA (or LCWA) mostly adopted vs. OWA

schema level information and reasoning capabilities almost disregarded

13

12
Cai, H. et al.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE TKDE 30(09),

pp. 1616-1637 (2018).
13

Picture from https://laptrinhx.com/node2vec-graph-embedding-method-2620064815/

C. d’Amato (UniBa) ML4SW - Lessons Learnt and Challenges GDR IA 2021 17 / 59

https://laptrinhx.com/node2vec-graph-embedding-method-2620064815/


Numeric-based learning methods KG embedding methods

...KG Embedding Models...

Graph embedding methods differ in their main building blocks: 14

the representation space: point-wise, complex, discrete, Gaussian,
manifold, etc.

the encoding model: linear, factorization, neural models, etc.

the scoring function: based on distance, energy, semantic matching, other
criteria, etc.

14
Ji, S., Pan, S., Cambria, E., Marttinen, P., and Yu, P. (2021). A survey on knowledge graphs: representation, acquisition,

and applications. IEEE Transactions on Neural Networks and Learning Systems.
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Numeric-based learning methods KG embedding methods

...KG Embedding Models

Goal

Learning embeddings s.t.

score of a valid (positive) triple
is higher than

the score of an invalid
(negative) triple 15

15
Picture from ”ECAI-20 Tutorial: Knowledge Graph Embeddings: From Theory to Practice”
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Numeric-based learning methods KG embedding methods

Idea: Enhance KGE through Background Knowledge Injection

By two components:

Reasoning: used for generating negative
triples

Axioms: domain, range, disjointWith,
functionalProperty;

BK Injection: defines constraints on
functions, corresponding to
the considered axioms,
guiding the way embedding
are learned

Axioms: equivClass, equivProperty,
inverseOf and subClassOf.
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Numeric-based learning methods KG embedding methods

Other KG Embedding Methods Leveraging BK

Jointly embedding KGs and logical rules [Guo, S. et al. @ ACL 2016] 16

triples represented as atomic formulae
rules represented as complex formulae modeled by t-norm fuzzy logics

Adversarial training exploiting Datalog clauses encoding assumptions
to regularize neural link predictors [Minervini, P. et al. @ UAI 2017] 17

A specific form of BK required, not directly applicable to KGs

16
Guo, S., Wang, Q., Wang, L., Wang, B., and Guo, L. (2016). Jointly embedding knowledge graphs and logical rules. In

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 192–202, Association for
Computational Linguistics.

17
Minervini, P., Demeester, T., Rocktaeschel, T., and Riedel, S. (2017). Adversarial sets for regularising neural link

predictors. In UAI 2017 Proceedings. AUAI Press.
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Numeric-based learning methods KG embedding methods

An approach to learn embeddings exploiting BK
[d’Amato et al. @ ESWC 2021] 18

Could be applied to more complex KG embedding methods
with additional formalization

18
C. d’Amato, N. F. Quatraro, N. Fanizzi: Injecting Background Knowledge into Embedding Models for Predictive Tasks on

Knowledge Graphs. ESWC 2021: 441-457 (2021)
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Numeric-based learning methods TransOWL

TransOWL...

TransOWL maintains TransE setting

TransE19 learns the vector embedding by minimizing

Margin-based loss function

L =
∑

⟨s,p,o⟩∈∆

⟨s′,p,o′⟩∈∆′

[γ + fp(es , eo)− fp(es′ , eo′)]+

where [x]+ = max{0, x}, and γ ≥ 0

Score function
similarity (negative L1 or L2 distance) of the translated
subject embedding (es + ep) to the object embedding eo :

fp(es , eo) = −∥(es + ep)− eo∥{1,2}.
19

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling
multi-relational data. Proceedings of NIPS 2013 (2013)
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Numeric-based learning methods TransOWL

...TransOWL

Derive further triples to be considered for training via schema axioms

equivClass, equivProperty, inverseOf and subClassOf

More complex loss function

adding a number of terms consistently with the constraints

L =

TransE loss function∑
⟨h,r,t⟩∈∆

⟨h′,r,t′⟩∈∆′

[γ + fr (h, t)− fr (h
′, t′)]+ +

∑
⟨t,q,h⟩∈∆inverseOf

⟨t′,q,h′⟩∈∆′
inverseOf

[γ + fq(t, h)− fq(t
′, h′)]+

+
∑

⟨h,s,t⟩∈∆equivProperty

⟨h′,s,t′⟩∈∆′
equivProperty

[γ + fs(h, t)− fs(h
′, t′)]+ +

∑
⟨h,typeOf,l⟩∈∆∪∈∆equivClass

⟨h′,typeOf,l′⟩∈∆′∪∆′
equivClass

[γ + ftypeOf(h, l)− ftypeOf(h
′, l ′)]+

+
∑

⟨h,subClassOf,p⟩∈∆subClass
⟨h′,subClassOf,p′⟩∈∆′

subClass

[(γ − β) + f (h, p)− f (h′, p′)]+

where q ≡ r−, s ≡ r (properties), l ≡ t and t ⊑ p (classes) and f (h, p) = ∥eh − ep∥
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Numeric-based learning methods TransROWL

TransROWL...

TransROWL

adopts the same approach of TransOWL
is derived from TransR 20

TransE ⇒ poor modeling reflexive and non 1-to-1 relations (e.g. typeOf)

TransR ⇒ more suitable to handle such specificity

TransR adopts TransE loss function

Score function
preliminarily projects es and eo to the different
d-dimensional space of the relational embeddings ep through
a suitable matrix M ∈ Rk×d :

f ′p(es , eo) = −∥(Mes + ep)−Meo∥{1,2}.

where e′s = Mes and e′o = Meo
20

Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In:
AAAI 2015 Proceedings. (2015)
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Numeric-based learning methods TransROWL

...TransROWL

TransOWL loss function adopted plus weighting parameters
equivClass, equivProperty, inverseOf and subClassOf

TransR score function adopted

L =
∑

⟨h,r,t⟩∈∆

⟨h′,r,t′⟩∈∆′

[γ + f ′r (h, t)− f ′r (h
′, t′)]+ + λ1

∑
⟨t,q,h⟩∈∆inverseOf

⟨t′,q,h′⟩∈∆inverseOf′

[γ + f ′q (t, h)− f ′q (t
′, h′)]+

+λ2

∑
⟨h,s,t⟩∈∆equivProperty

⟨h′,s,t′⟩∈∆equivProperty′

[γ + f ′s (h, t)− f ′s (h
′, t′)]+ + λ3

∑
⟨h,typeOf,l⟩∈∆∪∆equivClass

⟨h′,typeOf,l′⟩∈∆′∪∆′
equivClass

[γ + f ′typeOf(h, l)− f ′typeOf(h
′, l ′)]+

+λ4

∑
⟨t,subClassOf,p⟩∈∆subClass

⟨t′,subClassOf,p′⟩∈∆subClass′

[(γ − β) + f ′(t, p)− f ′(t′, p′)]+

where

q ≡ r−, s ≡ r (properties), l ≡ t and t ⊑ p (classes)

the parameters λi , i ∈ {1, . . . , 4}, weigh the influence that each
function term has during the learning phase
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Numeric-based learning methods TransROWLR

TransROWLR ...

TransROWLR adopts axiom-based regularization of the loss function,
as for TransER 21

by adding specific constraints to the loss function rather than

explicitly derive additional triples during training

TransER adopt TransE score and loss function
adds to the loss function axiom-based regularizers for inverse and
equivalent property constraints

Loss function

L =
∑

⟨h,r,t⟩∈∆

(h′,r′,t′)∈∆′

[γ + fr (h, t)− fr (h
′, t′)]+ + λ

∑
r≡q−∈TinverseOf

∥r + q∥+ λ
∑

r≡p∈TequivProp

∥r − p∥

where TinverseOf TequivProp set of inverse properties and equivalent properties
21

P. Minervini, L. Costabello, E. Muñoz, V. Novácek, P. Vandenbussche: Regularizing knowledge graph embeddings via
equivalence and inversion axioms. ECML PKDD Proc. LNAI, vol. 10534, pp. 668–683 (2017)

C. d’Amato (UniBa) ML4SW - Lessons Learnt and Challenges GDR IA 2021 27 / 59



Numeric-based learning methods TransROWLR

...TransROWLR

TransR score function adopted
additional regularizers needed for equivalentClass and
subClassOf axioms
further constraints on the projection matrices associated to relations

Loss function

L =
∑

⟨h,r,t⟩∈∆

⟨h′,r′,t′⟩∈∆′

[γ + f ′r (h, t)− f ′r (h
′, t′)]+

+λ1

∑
r≡q−∈TinverseOf

∥r + q∥ + λ2

∑
r≡q−∈TinverseOf

∥Mr −Mq∥

+λ3

∑
r≡p∈TequivProp

∥r − p∥ + λ4

∑
r≡p∈TequivProp

∥Mr −Mp∥

+λ5

∑
e′≡e′′∈TequivClass

∥e′ − e′′∥ + λ6

∑
s′⊆s′′∈TsubClass

∥1− β − (s ′ − s ′′)∥

Additional term for projection matrices required for inverseOf and equivProp

triples to favor the equality of their projection matrices
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Numeric-based learning methods Lesson Learnt from Experiments

Lesson Learnt from Experiments...

Goal: Assessing the benefit of exploiting BK

Comparing22 TransOWL, TransROWL, TransROWLR over to
the original models TransE and TransR as a baseline

Perfomances tested on:

Link Prediction task

Triple Classification task

Standard metrics adopted

KGs adopted:
KG #Triples #Entities #Relationships

DBpedia15K 180000 12800 278
DBpedia100K 600000 100000 321
DBpediaYAGO 290000 88000 316

NELL23 150000 68000 272

22
All methods implemented as publicly available systems https://github.com/Keehl-Mihael/TransROWL-HRS

23
equivalentClass and equivalentProperty missing; limited number of typeOf-triples; abundance of subClassOf-triples
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Numeric-based learning methods Lesson Learnt from Experiments

...Lesson Learnt from Experiments

Best performance achieved by TransROWL, in most of the cases,
and TransROWLR

TransROWL slightly superior performance of TransROWLR

As for NELL, the models showed oscillating performances wrt the
baselines

NELL was aimed at testing in condition of larger incompleteness

equivalentClass and equivalentProperty missing
low number of typeOf-triples per entity
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Numeric-based learning methods TransROWL-HRS

Moving from Enhanced KGE
through Background Knowledge
Injection [d’Amato et al. @ ESWC 2021]

Further enhance the model by
exploiting a three-level hierarchical
structure for a fine-grained
representation of the semantics of
the relations 24

rccluster level

· · · r′ · · ·relation level

· · · rs · · ·sub-relation level

24
As proposed in Zhang, Z., Zhuang, F., Qu, M., Lin, F., He, Q.: Knowledge graph embedding with hierarchical relation

structure. In: EMNLP 2018. pp. 3198–3207. ACL (2018) (where the picture is also taken from)
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Numeric-based learning methods TransROWL-HRS

TransROWL-HRS

[d’Amato et al. @ IJCLR 2021] 25

Learns the vector embedding by minimizing Margin-based loss function

L = LB + LHRS

with:

LB loss function of the base model TransROWL

and r = rc + r′ + rs

LHRS → linear combination of each group of embeddings in the
hierarchical structure of the relations with a different weights:

LHRS = λc

∑
rc∈C

∥rc∥22 + λr

∑
r′∈R

∥∥r′∥∥2
2
+ λs

∑
rs∈S

∥rs∥22

where: C set of clusters or relations, R = RG , and S set of sub-relations
25

C. d’Amato, N. F. Quatraro, N. Fanizzi: Embedding Models for Knowledge Graphs Induced by Clusters of Relations and
Background Knowledge. IJCLR 2021 Proceedings (2021)
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Numeric-based learning methods TransROWL-HRS

Base loss function (via triple corruption): cluster set C = {C1,C2, . . . ,Cnc}
TrasROWL loss function extended for taking into account the clusters the
relations belong to

LB =

nc∑
c=1

∑
r∈Cc

∑
(h,r,t)∈∆

(h′,r′,t′)∈∆′

[γ + f ′r (h, t)− f ′r (h
′, t′)]+

+λ1

nc∑
c=1

∑
q∈Cc

∑
(t,q,h)∈∆inverseOf

(t′,q,h′)∈∆′
inverseOf

[γ + f ′q (t, h)− f ′q (t
′, h′)]+

+λ2

nc∑
c=1

∑
s∈Cc

∑
(h,s,t)∈∆equivProperty

(h′,s,t′)∈∆′
equivProperty

[γ + f ′s (h, t)− f ′s (h
′, t′)]+

+λ3

nc∑
c=1

∑
typeOf∈Cc

∑
(h,typeOf,l)∈∆equivClass

(h′,typeOf,l′)∈∆′
equivClass

[γ + f ′typeOf(h, l)− f ′typeOf(h
′, l ′)]+

+λ4

nc∑
c=1

∑
typeOf∈Cc

∑
(t,subClassOf,p)∈∆subClass

(t′,subClassOf,p′)∈∆′
subClass

[(γ − β) + f ′(t, p)− f ′(t′, p′)]+
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Numeric-based learning methods TransROWL-HRS

Score function obtained by replacing the embedding vector for the
relation with the linear combinations of the terms coming from the
hierarchical structure

f ′r (h, t) =
∥∥hr + rc + r′ + rs − tr

∥∥
n

where

n indicates the norm (L1 or L2)

the projections of h and t (to the vector space of r) computed via the
projection matrix Mr : hr = hMr and tr = tMr
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Numeric-based learning methods Lesson Learnt from Experiments

Lesson Learnt from Experiments I

Goal: Assessing the benefit of exploiting the more complex model
for a fine-grained semantics of relations

Comparing26 TransROWL-HRS over to the original models
TransROWL, TransROWLR and TransR as a baseline

Perfomances tested on: Link Prediction and Triple Classification tasks,
Standard metrics adopted, same KGs adopted

Top-middle variant adopted (top-middle levels of the hierarchy)
Clustering of the relations via k-means
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Numeric-based learning methods Lesson Learnt from Experiments

Lesson Learnt from Experiments II

Proved improvements on KG refinement tasks

particularly when missing axioms and limited typeOf assertions available

Some shortcomings revealed (particularly typeOf prediction) when
more comprehensive datasets considered (DBpedia100K)

The new model not able to improve the baselines

suggests → more complex hierarchical structure mostly has a value
when limited axioms are available

26
All methods implemented as publicly available systems https://github.com/Keehl-Mihael/TransROWL-HRS
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Symbol-based learning methods for

Learning Disjointness Axioms



Symbol-based learning methods Learning Disjointness Axioms

A fine grained schema level information can bring better insight of the data

Disjointness axioms often missing 27

Problems:

introduction of noise

K ={JournalPaper ⊑ Paper , ConferencePaper ⊑ Paper , ConferencePaper(a),Author(a) }
K is Consistent !!!
Cause Axiom: Author ≡ ¬ConferencePaper missing

counterintuitive inferences

K ={JournalPaper ⊑ Paper , ConferencePaper ⊑ Paper , ConferencePaper(a) }

K |= JournalPaper(a)?
Answer: Unknown
Cause Axiom: JournalPaper ≡ ¬ConferencePaper missing

hard collecting negative examples when adopting numeric approaches
27

Wang, T.D., Parsia, B., Hendler, J.: A survey of the web ontology landscape. In: Cruz, I., et al. (eds.) The Semantic Web
- ISWC 2006, 5th Int. Semantic Web Conference Proceedings. LNCS, vol. 4273. Springer (2006), doi: 10.1007/11926078 49
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Symbol-based learning methods Learning Disjointness Axioms

Observation: extensions of disjoint concepts do not overlap

Question: would it be possible to automatically capture disjointness
axioms by analyzing the data configuration/distribution?

Idea: Exploiting (Conceptual) clustering methods for the purpose

Definition (Problem Definition)

Given

an ontological knowledge base K = ⟨T ,A⟩
a set of individuals (aka entities) I ⊆ Ind(A)

Find

n pairwise disjoint clusters {C1, . . . ,Cn}
for each i = 1, . . . , n, a concept description Di that describes
Ci , such that:

∀a ∈ Ci : K |= Di (a)
∀b ∈ Cj , j ̸= i : K |= ¬Di (b).

Hence ∀Di ,Dj , i ̸= j : K |= Dj ⊑ ¬Di .
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Symbol-based learning methods Learning Disjointness Axioms

Clustering Methods

Unsupervised inductive learning methods that organize a collection of
unlabeled resources into meaningful clusters such that

intra-cluster similarity is high

inter-cluster similarity is low
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Observation: extensions of disjoint concepts do not overlap

Question: would it be possible to automatically capture them by
analyzing the data configuration/distribution?

Idea: Exploiting (Conceptual) clustering methods for the purpose

Definition (Problem Definition)

Given

a knowledge base K = ⟨T ,A⟩
a set of individuals (aka entities) I ⊆ Ind(A)

Find

n pairwise disjoint clusters {C1, . . . ,Cn}
for each i = 1, . . . , n, a concept description Di that describes
Ci , such that:

∀a ∈ Ci : K |= Di (a)
∀b ∈ Cj , j ̸= i : K |= ¬Di (b).

Hence ∀Di ,Dj , i ̸= j : K |= Dj ⊑ ¬Di .
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Learning Disjointness Axioms: Developed Methods

Statistical-based approach

NAR - exploiting negative association rules [Fleischhacker et al. @
OTM’11]

PCC - exploiting Pearson’s correlation coeff. [Völker at al.@JWS
2015]

do not exploit any background knowledge and reasoning capabilities

Disjointness axioms learning/discovery can be hardly performed without
symbol-based methods
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Terminological Cluster Tree

Defined a method 28 for eliciting disjointness axioms [Rizzo et.al.@

SWJ’21] 29

solving a clustering problem via learning Terminological Cluster Trees

providing a concept description for each cluster

Definition (Terminological cluster tree (TCT))

A binary logical tree where

a leaf node stands for a cluster of individuals C

each inner node contains a description D (over the signature of K)

each departing edge corresponds to positive (left) and negative (right)
examples of D

28
Implemented system publicly available at https://github.com/Giuseppe-Rizzo/TCTnew

29
G. Rizzo, C. d’Amato, N. Fanizzi: An unsupervised approach to disjointness learning based on terminological cluster trees.

Semantic Web 12(3): 423-447 (2021)
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Example of TCT

Given I ⊆ Ind(A), an example of TCT describing the AI research
community

Person

Person ⊓ ∃hasPublication.⊤

Person ⊓ ∃hasPublication.AIPaper

C1 C2

C3

¬Person ⊓ Proceedings

C4 C5
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Collecting Disjointness Axioms

Given a TCT T:
Step I:

Traverse the T to collect the concept descriptions describing the
clusters at the leaves

A set of concepts CS is obtained

Step II:

A set of candidate axioms A is generated from CS:
an axiom D ⊑ ¬E (D,E ∈ CS) is generated if

D ̸≡ E (or D ̸⊑ E or viceversa - reasoner needed)
E ⊑ ¬D has not been generated

C. d’Amato (UniBa) ML4SW - Lessons Learnt and Challenges GDR IA 2021 48 / 59



Symbol-based learning methods Learning Disjointness Axioms

Collecting Disjointness Axioms: Example

Person

Person ⊓ ∃hasPublication.⊤

Person ⊓ ∃hasPublication.AIPaper

C1 C2

C3

¬Person ⊓ Proceedings

C4 C5

CS = { Person,
Person ⊓ ∃hasPublication.⊤,
¬(Person ⊓ ∃hasPublication.⊤)
Person ⊓ ∃hasPublication.AIPaper
¬Person ⊓ Proceedings · · · }

Axiom1: Person ⊓ ∃hasPublication.AIPaper ⊑ ¬(¬Person ⊓ Proceedings)
Axiom2: · · · serve stringa quanto quella sopra per allineare assio

C. d’Amato (UniBa) ML4SW - Lessons Learnt and Challenges GDR IA 2021 49 / 59



Symbol-based learning methods Learning Disjointness Axioms

Inducing a TCT

Given the set of individuals I and ⊤ concept

Divide-and-conquere approach adopted

Base Case: test the stopCondition
the cohesion of the cluster I exceeds a threshold ν

distance between medoids below a threshold ν

Recursive Step (stopCondition does not hold):

a set S of refinements of the current (parent) description C generated
the bestConcept E∗ ∈ S is selected and installed as current node

the one showing the best cluster separation ⇔ with max distance
between the medoids of its positive P and negative N individuals

I is split in:

Ileft ⊆ I ↔ individuals with the smallest distance wrt the medoid of P
Iright ⊆ I ↔ individuals with the smallest distance wrt the medoid of N
reasoner employed for collecting P and N

Note: Number of clusters not required - obtained from data distribution
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Lesson Learnt from experiments I

Experiments performed on ontologies publicly available

Goal I: Re-discover a target axiom (existing in K)

Metrics # discovered axioms and #cases of inconsistency
Results:

target axioms rediscovered for almost all cases
additional disjointness axioms discovered in a significant number
limited number of inconsistencies found

Ontology DL Language #Concepts #Roles #Individuals #Disj. Ax.s
BioPax ALCIF(D) 74 70 323 85
NTN SHIF(D) 47 27 676 40

Financial ALCIF(D) 60 16 1000 113
GeoSkills ALCHOIN (D) 596 23 2567 378
Monetary ALCHIF(D) 323 247 2466 236
DBPedia3.9 ALCHI(D) 251 132 16606 11
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Lesson Learnt from experiments II

Goal II:

Re-discover randomly selected target axioms added according to the
Strong Disjointness Assumption [Schlobach et al. @ ESWC 2005] 30

two sibling concepts in a subsumption hierarchy considered as disjoint

comparative analysis with statistical-based methods: PCC [Völker at al.

@ JWS 2015, NAR Fleischhacker et al. @ OTM’11]

Setting:

A copy of each ontology created removing 20%, 50%, 70% of the
disjointness axioms
Metrics: rate of rediscovered target axioms, #cases of inconsistency,
# addional discovered axioms
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Lesson Learnt from experiments III

Results:
almost all axioms rediscovered

Rate decreases when larger fractions of axioms removed, as expected

TCT outperforms PCC and NAR wrt additionally discovered axioms
whilst introducing limited inconsistency

TCT allows to express complex disjointness axioms

PCC and NAR tackle only disjointness between concept names

Exploiting K as well as the data distribution improves disjointness
axioms discovery

30
Schlobach, S. (2005). Debugging and semantic clarification by pinpointing. In The Semantic Web: Research and

Applications, ESWC 2005, Proceedings, Vol. 3532, LNCS, pp. 226–240, Springer
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Example of axioms

Successfully discovered axioms

ExternalReferenceUtilityClass ⊓ ∃TAXONREF.⊤
disjoint with
xref

Activity
disjoint with
Person ⊓ ∃nationality.United states

Person ⊓ hasSex.Male (≡ Man)
disjoint with
SupernaturalBeing ⊓ God (≡ God)

Not discovered axioms

Actor disjoint with Artefact

(concepts with few instances)
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Conclusions

Conclusions:

Exploiting BK to learn embeddings models may improve link
prediction and triple classification results

Symbol-based learning methods useful for supplementing schema level
information

Deductive reasoning important for the full usage of BK

Further Research Directions:

In deep study of enhanced KGE methods with BK injection

Scalability of symbol-based learning methods still need to be improved

Complement KG embedding methods with solutions for providing
explanations

Integrate further reasoning approaches (e.g. common sense reasoning)
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Thank you

Nicola Fanizzi Nicola Flavio Quatraro Giuseppe Rizzo



Distance measure between individuals adopted for TCT

Distance Function (adapted from [d’Amato et al.@ESWC2008]):

dC
n : Ind(A)× Ind(A) → [0, 1]

dC
n (a, b) =

[
m∑
i=1

wi [1− πi (a)πi (b)]
n

]1/n

Context: a set of atomic concepts C = {B1,B2, . . . ,Bm}

Projection Function:

∀ a ∈ Ind(A) πi (a) =


1 if K |= Bi (a)

0 if K |= ¬Bi (a)

0.5 otherwise

C. d’Amato (UniBa) ML4SW - Lessons Learnt and Challenges GDR IA 2021 58 / 59



Refinement Operators

Downward refinement operators specializing a concept C
ρ1 C ′ = C ⊓ (¬)A;
ρ2 C ′ = C ⊓ (¬)(∃)R.⊤;
ρ3 C ′ = C ⊓ (¬)(∀)R.⊤;
ρ4 ∃R.C ′

i ∈ ρ(∃R.Ci ) ∧ C ′
i ∈ ρ(Ci );

ρ5 ∀R.C ′
i ∈ ρ(∀R.Ci ) ∧ C ′

i ∈ ρ(Ci ).
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