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Data-centric View of ML Pipelines

N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich. 2018. Data Lifecycle Challenges in Production Machine Learning: A Survey. 
SIGMOD Rec. 47, 2 (December 2018), 17-28.
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We need mechanisms to understand, validate, clean, … data in ML pipelines in an end-to-end 
fashion!



Data Quality in the ML Era !

• An ML model is only as good as its data, and no 
matter how good a training algorithm is, the ultimate 
quality of automated decisions lie in the data itself! 
[European Union Agency for Fundamental Rights 
Data quality and artificial intelligence – Mitigating 
Bias and Error to Protect Fundamental Rights 2019]

• Only 3% of companies are making decisions based on 
data that meets basic quality standards [Harvard 
Business Review 2017]

• Most companies attempting to implement AI will fail
and one of the primary reasons is the lack of enough 
clean training data [Techgenix 2019]

https://www.dataversity.net/impact-data-quality-machine-learning-era/
https://www.dataversity.net/challenges-for-data-governance-and-data-quality-in-a-machine-learning-ecosystem/

https://derivsource.com/2020/11/05/the-real-
cost-of-poor-data-quality-400-million-or-much-
much-more/
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Data Quality for Building Production ML Systems

• Data quality management is a well-
established area of database research and 
several measures to assess the quality of 
data in databases (unsupervised) can be 
used in commercial products

• There is a need to relook at this approach 
from the lens of building machine learning 
models (supervised)!

• Need algorithms and tools that assess 
the quality of training/serving datasets 
and take remediate actions on labeled 
data errors

• Implement data quality management as a 
task of AutoML tools!

Anomalies (Outliers, 

Novelties)
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Example: Anomalies in Healthcare Data

Analysis Task: Detect possible abnormal measurements for a patient

- Why did M3 and M10 get a 
high score?

- Should I alert patients for 
health problems?
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2D Subspaces Explaining Anomalies: Local
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Local Explanation: Find subspaces that maximize anomalousness of individual samples
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Global Explanation: Find subspaces that summarize the anomalousness of as many 
samples as possible

2D Subspaces Explaining Anomalies: Global
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3D Subspaces Explaining Anomalies: Higher Dim.
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We don’t know in advance the dimensionality of ‘best explanations’! 
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Descriptive vs Predictive Anomaly Explanations

A feature subset that can maximize the 
anomalousness score of samples as

seen by a detector

A minimal subset of features leading to a 
predictive model that best approximates the 

decision boundary of a detector
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Predictive Explanation
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How Can We Produce Predictive Explanations ?
Density-Based
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Isolation-Based
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PROTEUS Outcome and Design Choices

PROTEUS AutoML Output

Explaining 
Feature 

Subspaces

Reduced Dim 
Surrogate 

Model

Out-of-sample Performance 
Estimation

❶ How to treat the inherent imbalance nature of the anomaly class ?
❷ How we avoid information leakage between train and test sets ?
❸ How provide reliable performance estimates ?

PROTEUS AutoML Pipeline 
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Classification 
Algorithms

Feature 
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Feature 
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Parameter Optimizer
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Overview of Proteous Design Choices
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Model1 … Modeln

0.8 … 0.6

… … …

0.4 … 0.55

❸
Bootstrap Bias 

Correction (BBC)

Out-of-sample Predictions
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PROTEUS Search Space of Surrogate Models

Random 
Forest

# Trees: {100, 300, 500}, 
MinLeafSize: {1, 2, 3} 
Split Criterion: {Entropy}

Support 
Vector 

Machines

Kernel: {Linear, RBF, Poly}, 
C: {1, 5, 10}, γ: {1, 2, 5}, 
degree: {2, 3}

K-Nearest 
Neighbors

K: {5, 10 ,15}

Classification Algorithms

SES max_k: {2,3},
α: {0.01, 0.05, 0.1}

FBED threshold.: {0.01, 0.05, 0.1} , 
iters: {0, 1, 3}

Lasso λ: {0.001, 0.01, 0.1, 0.2}

Feature Selection Algorithms

Configuration 1: SES: max_k=2 , α=0.01 & Random Forest: #Trees=100, MinleafSize:1, Split Crit.: Entropy & ps=0
Configuration 2: SES: max_k=3 , α=0.01 & Random Forest: #Trees=100, MinleafSize:1, Split Crit.: Entropy & ps=0

Configuration 1800: Lasso: λ=0.2 & KNN: K=15 & ps=10

Pseudo Samples Per Anomaly (ps): 0, 3, 10

X

Cartesian 
Product
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Exhaustive Grid Search



Related Work & Baselines

Method Category Detector
Agnostic

Global 
Explanation

Predictive
Explanation

SHAP
[Lundberg et al. 2017]

Black-box model 
explainer

✔ ❌ ❌

CA-Lasso
[Micenková et al. 2013]

Post-hoc anomaly 
explainer

✔ ❌ ❌

LODA
[Penvy T. 2015]

Explainable anomaly 
detector

❌ ❌ ❌

PROTEUS
[Myrtakis et al. 2021]

AutoML anomaly 
explainer

✔ ✔ ✔
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Real and Synthetic Datasets

Dataset 
Name

# Features # Samples Anomaly 
Ratio

IF LOF LODA

Synthetic 5 867 1% 0.96 1.0 0.92

Wisconsin 
Breast Cancer

30 377 5% 0.95 0.94 0.96

Ionosphere 33 358 36% 0.85 0.93 0.87

Arrhythmia 257 452 15% 0.80 0.74 0.75

Adding irrelevant features to the synthetic dataset: 77%, 88%, 92%, 94%, 95%
Adding irrelevant features to every real dataset: 30%, 60%, 90%

Characteristics Detectors AUC in Train
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Experimental Setting

• Each dataset was stratified and split to 70% training - 30% held out

• Up to 10 features were selected as explanation based on their scores

• Experimental Dimensions

Detectors (IF, LOF, LODA)

PROTEUS (fs, full, ca-lasso, shap, loda)

255 analyses
1 synthetic dataset 
and 3 real datasets

Datasets with irrelevant features 
5 for the synthetic and 3 per real dataset

23



PROTEUS Performance Estimation

Q: Do the design choices of PROTEUS contribute to provide an accurate performance
estimation ?

• Each point represents the train and test 
performance for a particular analysis

• The dashed black diagonal line indicates 
the zero bias 

• The red line is the loess smoothing curve 
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Ablation Analysis

• PROTEUS with BBC and CV with Grouping gives 
the most accurate estimation

BBC & 
Grouping

No BBC & 
Grouping

BBC & 
No 

Grouping

No BBC & 
No Grouping

0.05 0.88 0.11 0.25

Residual Sum of Squares of the 4 design choices

Q: How is the accuracy of performance estimation affected by different design choices ?
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Relevant Features Identification Accuracy

Q: What is the precision and recall of discovered features w.r.t. synthetic gold-
standard of anomaly explanations (with 5 relevant features)?

• Feature selection algorithms of PROTEUSfs

exhibit the highest overall precision 
suboptimal recall

• Unlike SHAP and CA-Lasso, PROTEUSfs

exhibits a robust performance when 
varying data dimensionality, regardless of 
the employed detector

• PROTEUSfs approximates well the recall of 
the explainable detector LODA which is 
the upper performance limit
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Generalization Performance

• AUC test performance averaged over the 3 detectors

• In synthetic dataset PROTEUSfs generalizes 
better than PROTEUSfull

• In real datasets PROTEUSfs is robust achieving 
high performance regardless of the employed 
detector

• PROTEUSfs approximates the optimal 
performance of LODA in a detector-agnostic 
manner
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Contrasting PROTEUS Surrogate Models With 
Unsupervised Anomaly Detectors

• Ionosphere Dataset (33 Features)

Proteus Anomaly Proteus Normal 29

Proteus Agreement with LOF 
(9 features explanation)

Proteus Disagreement with LOF 
(9 features explanation)



Anomaly Detection & Explanation Operators in SAP DI

31https://developers.sap.com/topics/data-intelligence.html



Predictive Anomaly Explanation Pipeline in SAP DI

Data Stream
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Summary

• Anomaly explanation ⟶ a supervised 
classification problem with feature selection ⟶
solved effectively as an AutoML problem

• First methodology for predictive, global, detector-
agnostic anomaly explanations

▪ Not all existing explanation formalisms can serve as 
a predictive model!

• PROTEUS is robust and effective discovering 
features relevant to anomalies

• Adequate design choices (Oversampling, BBC, CV with 
Grouping)⟶accurate approximation of a 
detector’s decision boundary⟶accurate performance 
estimation
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In Greek mythology, Proteus (Πρωτεύς) is an early 
prophetic sea-god or god of rivers and oceanic 
bodies of water, one of several deities whom 
Homer calls the "Old Man of the Sea" 



Open Issues in xAD

• Explaining Anomalies in Data Streams

▪ Online Anomaly Detection & Explanation

• Explainability of Time Series Models

▪ Higher-level data abstractions to explain DL-
based models for temporal patterns

• End-to-end explanations of data quality issues in 
ML pipelines

▪ Coupling diagnosis of downstream ML models 
to upstream data preprocessing

▪ Heterogenenous explanation models for 
different tasks: boolean expressions, decision 
trees, numerical score of feature importance 
(Linear Regression, SHAP)
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Questions?

https://thenextweb.com/contributors/2018/10/06/we-need-to-build-ai-systems-we-can-trust/



The Three Pillars of xAI

Valérie Beaudouin, Isabelle Bloch, David Bounie, Stéphan Clémençon, Florence d’Alché-Buc, et al. Flexible and 
Context-Specific AI Explainability: A Multidisciplinary Approach. 2020. hal-02506409 37



Thomas Rojat, Raphael Puget, David Filliat, Javier Del Ser, Rodolphe Gelin, and Natalia Dıaz Rodrıguez.
Explainable Artificial Intelligence (XAI) on Time Series Data: A Survey CoRR abs/2104.00950 (2021) 38

xAI Terminology and Definitions



End-to-End Machine Learning System

39https://suneeta-mall.github.io/2019/12/23/Reproducible-ml-pipeline-k8s.html



Creating a Predictive Explanation for Feature 
Importance Methods using PROTEUS

CA-Lasso

SHAP

LODA
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PROTEUSSHAP

PROTEUSLODA

40



The Effect of Oversampling on Performance

• Effect  of  increasing  pseudo-sample  size  per  anomaly  on  AUC  test performance
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