

Explainable Anomaly Detection (xAD)

N. Myrtakis I. Tsamardinos

University of Crete, Heraklion Greece E. Simon

Data-centric View of ML Pipelines

N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich. 2018. Data Lifecycle Challenges in Production Machine Learning: A Survey. SIGMOD Rec. 47, 2 (December 2018), 17-28.

Data Quality in the ML Era !

- An ML model is only as good as its data, and no matter how good a training algorithm is, the ultimate quality of automated decisions lie in the data itself! [European Union Agency for Fundamental Rights Data quality and artificial intelligence – Mitigating Bias and Error to Protect Fundamental Rights 2019]
- Only 3% of companies are making decisions based on data that meets basic quality standards [Harvard Business Review 2017]
- Most companies attempting to implement AI will fail and one of the primary reasons is the lack of enough clean training data [Techgenix 2019]

https://www.dataversity.net/impact-data-quality-machine-learning-era/
https://www.dataversity.net/challenges-for-data-governance-and-data-quality-in-a-machine-learning-ecosystem/

https://derivsource.com/2020/11/05/the-realcost-of-poor-data-quality-400-million-or-muchmuch-more/

Data Quality for Building Production ML Systems

- Data quality management is a wellestablished area of database research and several measures to assess the quality of data in databases (*unsupervised*) can be used in commercial products
- There is a need to relook at this approach from the lens of building machine learning models (supervised)!
 - Need algorithms and tools that assess the quality of training/serving datasets and take remediate actions on labeled data errors
- Implement data quality management as a task of AutoML tools!

Anomalies (Outliers, Novelties)

Measurements

Example: Anomalies in Healthcare Data

Analysis Task: Detect possible abnormal measurements for a patient

Scores close to **0** for normal samples and close to **1** for anomalies

	Glucose (mg/dL)	Blood Oxygen (%)	Blood Pressure (systolic)	Heart Rate (beats/m)	Anomaly Score	- Why did M3 and M10 get a high score?
M1	100	95	100	100	0.3	health problems?
N/17	130	94	125	95	0.35	
1012	140	97	150	160	0.9	\leftarrow
1013	:	:	:	:	:	
:	150	90	120	105	0.95	
M10						

2D Subspaces Explaining Anomalies: Local

Local Explanation: Find subspaces that maximize anomalousness of individual samples

2D Subspaces Explaining Anomalies: Global

Global Explanation: Find subspaces that summarize the anomalousness of as many samples as possible

3D Subspaces Explaining Anomalies: Higher Dim.

We don't know in advance the **dimensionality of 'best explanations'**!

Descriptive vs Predictive Anomaly Explanations

Descriptive Explanation

Predictive Explanation

A feature subset that can maximize the anomalousness score of samples as seen by a detector

A minimal subset of features leading to a predictive model that best approximates the decision boundary of a detector

How Can We Produce Predictive Explanations ?

Density-Based

PROTEUS Outcome and Design Choices

Overview of Proteous Design Choices

PROTEUS Search Space of Surrogate Models

Classification Algorithms

Feature Selection Algorithms

Exhaustive Grid Search

Configuration 1: SES: max_k=2, α=0.01 & Random Forest: #Trees=100, MinleafSize:1, Split Crit.: Entropy & ps=0 Configuration 2: SES: max_k=3, α=0.01 & Random Forest: #Trees=100, MinleafSize:1, Split Crit.: Entropy & ps=0 Configuration 1800: Lasso: λ=0.2 & KNN: K=15 & ps=10

Configuration 1800: Lasso: λ=0.2 **& KNN**: K=15 **&** ps=10

Related Work & Baselines

Method	Category	Detector Agnostic	Global Explanation	Predictive Explanation
SHAP [Lundberg et al. 2017]	Black-box model explainer	~	×	×
CA-Lasso [Micenková et al. 2013]	Post-hoc anomaly explainer	~	×	×
LODA [Penvy T. 2015]	Explainable anomaly detector	×	×	×
PROTEUS [Myrtakis et al. 2021]	AutoML anomaly explainer	~	~	~

Real and Synthetic Datasets

Dataset Name	# Features	# Samples	Anomaly Ratio	IF	LOF	LODA
Synthetic	5	867	1%	0.96	1.0	0.92
Wisconsin Breast Cancer	30	377	5%	0.95	0.94	0.96
lonosphere	33	358	36%	0.85	0.93	0.87
Arrhythmia	257	452	15%	0.80	0.74	0.75

<u>Adding irrelevant features to the synthetic dataset</u>: 77%, 88%, 92%, 94%, 95% <u>Adding irrelevant features to every real dataset</u>: 30%, 60%, 90%

Experimental Setting

- Each dataset was stratified and split to 70% training 30% held out
- Up to 10 features were selected as explanation based on their scores
- Experimental Dimensions

PROTEUS Performance Estimation

Q: Do the design choices of PROTEUS contribute to provide an accurate performance estimation ?

- <u>Each point</u> represents the train and test performance for a <u>particular analysis</u>
- The **dashed black diagonal** line indicates the zero bias
- The red line is the loess smoothing curve

Ablation Analysis

Q: How is the accuracy of performance estimation affected by different design choices ?

BBC & Grouping	No BBC & Grouping	BBC & No	No BBC & No Grouping	
		Grouping		
0.05	0.88	0.11	0.25	

Residual Sum of Squares of the 4 design choices

• PROTEUS with BBC and CV with Grouping gives the most accurate estimation

Relevant Features Identification Accuracy

Q: What is the precision and recall of discovered features w.r.t. synthetic gold-standard of anomaly explanations (with 5 relevant features)?

- Feature selection algorithms of PROTEUS_{fs} exhibit the highest overall precision suboptimal recall
- Unlike SHAP and CA-Lasso, PROTEUS_{fs} exhibits a robust performance when varying data dimensionality, regardless of the employed detector
- PROTEUS_{fs} approximates well the recall of the explainable detector LODA which is the upper performance limit

Generalization Performance

- In synthetic dataset PROTEUS_{fs} generalizes better than PROTEUS_{full}
- In real datasets PROTEUS_{fs} is robust achieving high performance regardless of the employed detector
- PROTEUS_{fs} approximates the optimal performance of LODA in a detector-agnostic manner

• AUC test performance averaged over the 3 detectors

Contrasting PROTEUS Surrogate Models With Unsupervised Anomaly Detectors

• Ionosphere Dataset (33 Features)

Proteus Agreement with LOF

Anomaly Detection & Explanation Operators in SAP DI

https://developers.sap.com/topics/data-intelligence.html

Predictive Anomaly Explanation Pipeline in SAP DI

Summary

- Anomaly explanation → a supervised classification problem with feature selection → solved effectively as an AutoML problem
- **First** methodology for predictive, global, detectoragnostic anomaly explanations
 - Not all existing explanation formalisms can serve as a predictive model!
- PROTEUS is **robust** and **effective** discovering features relevant to anomalies
- Adequate design choices (Oversampling, BBC, CV with Grouping)→accurate approximation of a detector's decision boundary→accurate performance estimation

In Greek mythology, Proteus (Πρωτεύς) is an early prophetic sea-god or god of rivers and oceanic bodies of water, one of several deities whom Homer calls the "Old Man of the Sea"

Open Issues in xAD

- Explaining Anomalies in Data Streams
 - Online Anomaly Detection & Explanation
- Explainability of Time Series Models
 - Higher-level data abstractions to explain DLbased models for temporal patterns
- End-to-end explanations of data quality issues in ML pipelines
 - Coupling diagnosis of downstream ML models to upstream data preprocessing
 - Heterogenenous explanation models for different tasks: boolean expressions, decision trees, numerical score of feature importance (Linear Regression, SHAP)

Acknowledgements

1st Call for H.F.R.I. Research Projects to Support Faculty Members & Researchers and Procure High-Value Research Equipment

Fellows-in-Residence 2019-2020

https://arxiv.org/abs/2110.09467

Questions?

https://thenextweb.com/contributors/2018/10/06/we-need-to-build-ai-systems-we-can-trust/

The Three Pillars of xAI

Valérie Beaudouin, Isabelle Bloch, David Bounie, Stéphan Clémençon, Florence d'Alché-Buc, et al. Flexible and Context-Specific AI Explainability: A Multidisciplinary Approach. 2020. hal-02506409

Thomas Rojat, Raphael Puget, David Filliat, Javier Del Ser, Rodolphe Gelin, and Natalia Diaz Rodriguez. Explainable Artificial Intelligence (XAI) on Time Series Data: A Survey CoRR abs/2104.00950 (2021)

End-to-End Machine Learning System

Creating a Predictive Explanation for Feature Importance Methods using PROTEUS

The Effect of Oversampling on Performance

• Effect of increasing pseudo-sample size per anomaly on AUC test performance Wisconsin Breast Cancer Ionosphere Arrhythmia

References

• Breunig, M.M., Kriegel, H.-P., Ng, R.T., and Sander, J. 2000. LOF: identifying densitybased local outliers. *SIGMOD*.

• Jensen, D. D.; and Cohen, P. R. 2000. Multiple Comparisons in Induction Algorithms. *do. Learn.*

- Kriegel, H.-P., Schubert, M., and Zimek, A. (2008). Angle-based outlier detection. KDD.
- Lagani, V.; Athineou, G.; Farcomeni, A.; Tsagris, M.; Tsamardinos, I.; et al. 2017. Feature Selection with the R Package MXM:Discovering Statistically Equivalent Feature Subsets. *Journal of Statistical Software.*
- Liu, F.T., Ting, K.M., Zhou, Z.H. (2008). Isolation forest. ICDM
- Pevny, T. 2015. Loda: Lightweight on-line detector of anomalies. Machine Learning.

• **Tibshirani**, R. **1996**. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society*

• **Tsamardinos**, I.; Greasidou, E.; and Borboudakis, G. **2018**. Bootstrapping the out-of-sample predictions for efficient and accurate cross-validation. *Machine Learning.*

• **Tsamardinos**, I.; Borboudakis, G.; Katsogridakis, P.; Pratikakis, P.;and Christophides, V. **2019**. A greedy feature selection algorithm for Big Data of high dimensionality. *Machine Learning.*