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Data-centric View of ML Pipelines

/ Why my Model
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Data | Data

We needymechanisms to understand, validate, clean, ... datain ML pipelines in an end-to-endy,
fashion!
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Data Quality in the ML Era !

* An ML modelis only as good as its data, and no
matter how good a training algorithm is, the ultimate
quality of automated decisions lie in the data itself!
[European Union Agency for Fundamental Rights
Data quality and artificial intelligence — Mitigating
Bias and Error to Protect Fundamental Rights 2019] ——————

* Only 3% of companies are making decisions based on
data that meets basic quality standards [Harvard
Business Review 2017]

 Most companies attemptingto implement Al will fail https://derivsource.com/2020/11/05/the-real-
and one of the primary reasons is the lack of enough €0st-of-poor-data-quality-400-million-or-much-

much-more/
clean training data [Techgenix 2019]

https://www.dataversity.net/impact-data-quality-machine-learning-era/
https://www.dataversity.net/challenges-for-data-governance-and-data-quality-in-a-machine-learning-ecosystem/



Data Quality for Building Production ML Systems

Anomalies (Outliers,

e Data quality management is a well- Novelties)
established area of database research and °
several measures to assess the quality of O O ®
data in databases (unsupervised) can be OO ':D:' OO |:> o :' . @ °
used in commercial products OQ OO '@

* Thereis a need to relook at this approaCh Processed Data Processed Labels ML ;odel

from the lens of building machine learning
models (supervised)! ﬁ ﬁ
* Need algorithms and tools that assess OOO
the quality of training/serving datasets QQ O

and take remediate actions on labeled Q OQ
data errors Raw Data Multiple Labels Model Parameters

1
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* Implement data quality management as a Data Bugs Model Bugs
taSk Of AUtOML tOOIS! https://dawn.cs.stanford.edu/2018/08/30/debugging?2 4



Example: Anomalies in Healthcare Data

Analysis Task: Detect possible abnormal measurements for a patient

Scores close to 0 for normal samples and close to 1 for anomalies

Glucose Blood Heart Rate
(mg/dL) Pressure | (beats/m)
(systolic)
e
100 95 100 100
M1
QE) 130 94 125 95
S M2
% 140 97 150 160
Q
s M3
150 90 120 105

M10

- Why did M3 and M10 get a

high score?
- Should | alert patients for
0.3 health problems?
0.35
0.9 o
0.95
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2D Subspaces Explaining Anomalies: Local
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Local Explanation: Find subspaces that maximize anomalousness of individual samples



2D Subspaces Explaining Anomalies: Global
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Global Explanation: Find subspaces that summarize the anomalousness of as many
samples as possible




3D Subspaces Explaining Anomalies: Higher Dim.

® Measurement 3 © Measurement 10 @® Normal Measurements
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We don’t know in advance the dimensionality of ‘best explanations’!



Descriptive vs Predictive Anomaly Explanations

Descriptive Explanation Predictive Explanation
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A feature subset that can maximize the A minimal subset of features leading to a
anomalousness score of samples as predictive model that best approximates the
seen by a detector decision boundary of a detector




How Can We Produce Predictive Explanations ?

Den.sity—Based
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PROTEUS Outcome and Design Choices

PROTEUS AutoML Pipeline
/ ’ \ / PROTEUS AutoML Output \

Explaining | Reduced Dim

Feature Surrogate
Subspaces Model

Feature
Selectors

Out-of-sample Performance
\ Estimation

€@ How to treat the inherent imbalance nature of the anomaly class ?
@ How we avoid information leakage between train and test sets ?
6 How provide reliable performance estimates ?
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Overview of Proteous Design Choices
o e ©

Supervised Oversampling Anomaly Grouping Bootstrap Bias
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PROTEUS Search Space of Surrogate Models

Classification Algorithms Feature Selection Algorithms
Random | # Trees: {100, 300, 500}, Cartesian SES max_k: {2,3},
Forest MinLeafSize: {1, 2, 3} Product o: {0.01, 0.05, 0.1}
Split Criterion:{Entropy}
: > ) FBED threshold.: {0.01, 0.05, 0.1},
Support Kernel: {Linear, RBF, Poly}, iters: {0, 1, 3}
Vector C: {1, 5, 10}, Y. {1, 2, 5},
Machines degree: {2, 3} Lasso A: {0.001, 0.01, 0.1, 0.2}
K-Nearest |K:{5,10,15} Pseudo Samoles Per A | 03 10
Neighbors l seudo Samples Per Anomaly (ps): 0, 3,

Exhaustive Grid Search
Configuration 1: SES: max_k=2, a=0.01 & Random Forest: #Trees=100, MinleafSize:1, Split Crit.: Entropy & ps=0
Configuration 2: SES: max_k=3, a=0.01 & Random Forest: #Trees=100, MinleafSize:1, Split Crit.: Entropy & ps=0

Configuration 1800: Lasso: A=0.2 & KNN: K=15 & ps=10
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Related Work & Baselines

Category Detector Global Predictive
Agnostic Explanation Explanation

SHAP Black-box model v X X
[Lundberg et al. 2017] | explainer

CA-Lasso Post-hoc anomaly v X X
[Micenkova et al. 2013] | explainer

LODA Explainable anomaly X X X
[Penvy T. 2015] detector

PROTEUS AutoML anomaly v v v

[Myrtakis et al. 2021] | explainer
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Real and Synthetic Datasets

Dataset # Features #Samples Anomaly 3
Name Ratio
Synthetic 5 867 1% 0.96 1.0 0.92
Wisconsin 30 377 5% 0.95 0.94 0.96
Breast Cancer

lonosphere 33 358 36% 0.85 0.93 0.87

Arrhythmia 257 452 15% 0.80 0.74 0.75
| J J
Characteristics Detectors AUC in Train

Adding irrelevant features to the synthetic dataset: 77%, 88%, 92%, 94%, 95%
Adding irrelevant features to every real dataset: 30%, 60%, 90%
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Experimental Setting

* Each dataset was stratified and split to 70% training - 30% held out

 Up to 10 features were selected as explanation based on their scores

* Experimental Dimensions

Detectors (IF, LOF, LODA)

PROTEUS (fs, full, ca-lasso, shap, loda)

Datasets with irrelevant features

o

[ 255 analyses }

5 for the synthetic and 3 per real dataset

1 synthetic dataset
and 3 real datasets
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PROTEUS Performance Estimation

Q: Do the design choices of PROTEUS contribute to provide an accurate performance
estimation ?
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Each point represents the train and test

0.4

0.5 0.6 0.7 0.8 0.9 1.0
AUC Train Performance Estimation

performance for a particular analysis

The dashed black diagonal line indicates
the zero bias

The red line is the loess smoothing curve
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Ablation Analysis

[Q: How is the accuracy of performance estimation affected by different design choices ? 1

] e s Grauming , BBC& |[NoBBC&| BBC& No BBC &
091 77 ﬁﬁ‘;ﬁ‘c”zﬁg"éﬂﬂimg. o Grouping | Grouping No No Grouping
0s ' Grouping

o5 0.05 0.88 0.11 0.25

AUC Test Performance
o
(@)}

Residual Sum of Squares of the 4 design choices

o
&

| | | | | | | = PROTEUS with BBC and CV with Grouping gives
A AP AU O S the most accurate estimation

AUC Train Performance Estimation

o
~
1
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Relevant Features Identification Accuracy

Q: What is the precision and recall of discovered features w.rt. synthetic gold-
standard of anomaly explanations (with 5 relevant features)?

PROTEUSf5 +PROTEUSCa — lasso +PROTEU55hap +PROTEUS[0da

* Feature selection algorithms of PROTEUS,,

o al . i . Lona exhibit the highest overall precision
_ 087 _08- _ 087 suboptimal recall
S 06 3 06 306

S 0a 2 oa. 2 os i * Unlike SHAP and CA-Lasso, PROTEUS,
mo_z_k@/\ " 02 1N x “O,Z_W exhibits a robust performance when

varying data dimensionality, regardless of

Lo Lo o ———— the employed detector

081 081 0.8 1 * PROTEUS,, approximates well the recall of
Eind g% £ the explainable detector LODA which is
& 0.4 - & 0.4 - & 0.4 - P —

021 021 021 the upper performance limit

0.0 4 4 0.0 0.0 T T T

100 01& \‘3’2@ \97"?3\9“0& o 200 UL@) \?’23 \91!23\9&[\6 " Lo @o g ;0\¢ o 00 K‘Wocs o
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Generalization Performance

—— PROTEUSgqy  —®— PROTEUSis  —%— PROTEUScs-jasso —#— PROTEUSspzp  —*— PROTEUS)oq0a

Synthetic Wisconsin Breast Cancer
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%, Contrasting PROTEUS Surrogate Models With
E Unsupervised Anomaly Detectors

* lonosphere Dataset (33 Features)

Proteus Agreement with LOF Proteus Disagreement with LOF
(9 features explanation) (9 features explanation)

Ratlar.20 Radar 20

hdar 25 hdar 25

Radar 14
Radar 10 Radar 10

e Proteus Anomaly - Proteus Normal 2




! Anomaly Detection & Explanation Operators in SAP DI

https://developers.

Machine Learning Services

. 28035
il =
ML Notebooks Data Science Workflows ML Operations Other Use
. . . Case Specific
Core Services Functional Services Services

Pre-trained Services
Face Recognition, Translation, OCR etc.

Model Training Service
compute custom ML models

Customizable Services
Customizable Image Classification, Customizable Text Classification etc.

Model Inference Service
query custom trained ML models

Data Management and Orchestration Services

Data Governance Integration & Orchestration

o o]en @hL[LI] _”'lj -
=0 G 3.
= ° = Seoze
Metadata Access API Acul::ess
Management Governance

Visual Pipeline Data
Workflows

Data Preparation
& Labeling Modeling

Foundational Capabilities

) = =

Distributed Runtime System Management Metadata & Applications Data Store

Pipelines & Workflows

sap.com/topics/data-intelligence.html
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Predictive Anomaly Explanation Pipeline in SAP DI

Reduced-
[ e — } dimensionality Alarms: Discarded:
Multi-Dimensional surrogate model Anomalies Normal Points
‘ Data Samples %A o e esos
® ® o O
.. ® e R t .~§ O \/
e o0 o "
l New batch § @~ go(e® fHuman ®
of data > LA st —
Anomaly Glucose nalys
Detector I
l Classifiers
[ X JoNeoXe | eeooo
coe®eee 3 X X X X T
Scored Samples == | gbelled Samples | Feature
® High ® Low Anomaly Selectors
>cores PROTEUS AutoML Pipeline

Binarization 32



Summary

Anomaly explanation — a supervised
classification problem with feature selection —
solved effectively as an AutoML problem

First methodology for predictive, global, detector-
agnostic anomaly explanations

= Not all existing explanation formalisms can serve as
a predictive model!

PROTEUS is robust and effective discovering
features relevant to anomalies

Adequate design choices (Oversampling, BBC, CV with
Grouping)—accurate approximation of a

detector’s decision boundary—accurate performance
estimation

= =
— =

——— <

—

— ——
———
e e

T AT JU
UNE SIRENE PROTER

In Greek mythology, Proteus (Mpwtevlc) is an early

prophetic sea-god or god of rivers and oceanic

bodies of water, one of several deities whom
Homer callsthe "Old Man of the Sea"

TRITON
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* Explaining Anomalies in Data Streams
= Online Anomaly Detection & Explanation
* Explainability of Time Series Models

= Higher-level data abstractions to explain DL-
based models for temporal patterns

 End-to-end explanations of data quality issues in
ML pipelines

= Coupling diagnosis of downstream ML models
to upstream data preprocessing

= Heterogenenous explanation models for
different tasks: boolean expressions, decision
trees, numerical score of feature importance
(Linear Regression, SHAP)

Open Issues in XAD
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Questions?

https://thenextweb.com/contributors/2018/10/06/we-need-to-build-ai-systems-we-can-trust/



EXPLAINABILITY
CONTEXT FACTORS TECHNICAL SOLUTIONS PARAMETERS

et

RECIPIENT

WL
[\

IMPACT

L

REGULATORY =

il .

OPERATIONAL | «

The Three Pillars of xAl

Who is receiving the
explanation,

e Level of expertise,

Time available.

What harms possible,

Can explanation
mitigate harm.

What regulatory
framework,

Fundamental rights.

Is explainability
an operational
imperative,

Safety certification,

Usability need.

POST-HOC

HYBRID

LIME,
Kernel-SHAP,

Saliency maps.

Modifying objective
or predictor function,

Produce fuzzy rules,
Output approaches,
Input approaches,

Genetic fuzzy logic.

GLOBAL
EXPLAINABILITY

LOCAL
EXPLAINABILITY

e User's manual,
e [evel of detail,
e Source code,

* Info on training
data,

e Learning
algorithm,

e Disclosure of
biases,

e Copy of training
data.

e Counterfactual
dashboards,

e Saliency maps,

e [evel of detail,

¢ |ndividual
decision logs,

e What
information
in logs, and
store how long.

valérie Beaudouin, Isabelle Bloch, David Bounie, Stéphan Clémencon, Florence d’Alché-Buc, et al. Flexible and
Context-Specific AI Explainability: A Multidisciplinary Approach. 2020. hal-02506409
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XAl Terminology and Definitions

Stability

Needed by

Robustness provides

increases extends verifies

needed for

Trustworthiness

1

"’. J)}'

Explainability Confidence

validates

contributes to

fosters

Interpretability Interactivity
v 1
) o=
(=]
enriches =

Thomas Rojat, Raphael Puget, David Filliat, Javier Del Ser, Rodolphe Gelin, and Natalia Di1az Rodriguez.
Explainable Artificial Intelligence (XAI) on Time Series Data: A Survey CoRR abs/2104.00950 (2021) 38



End-to-End Machine Learning System

Data Inference & insights

&

Model Offline Inference
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https://suneeta-mall.github.io/2019/12/23/Reproducible-ml-pipeline-k8s.html 39



Creating a Predictive Explanation for Feature
Importance Methods using PROTEUS
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The Effect of Oversampling on Performance

1.0+
0.9
0.8 -
0.7
0.6

0.5

* Effect of increasing pseudo-sample size per anomaly on AUC test performance

Wisconsin Breast Cancer
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